scholarly journals A Fast and Accurate Similarity-constrained Subspace Clustering Algorithm for Hyperspectral Image

Author(s):  
Carlos Hinojosa ◽  
Esteban Vera ◽  
Henry Arguello
2021 ◽  
Vol 3 (2) ◽  
pp. 163-175
Author(s):  
Bindhu V ◽  
Ranganathan G

With the advent of technology, several domains have b on Internet of Things (IoT). The hyper spectral sensors present in earth observation system sends hyper spectral images (HSIs) to the cloud for further processing. Artificial intelligence (AI) models are used to analyse data in edge servers, resulting in a faster response time and reduced cost. Hyperspectral images and other high-dimensional image data may be analysed by using a core AI model called subspace clustering. The existing subspace clustering algorithms are easily affected by noise since they are constructed based on a single model. The representation coefficient matrix connectivity and sparsity is hardly balanced. In this paper, connectivity and sparsity factors are considered while proposing the subspace clustering algorithm with post-process strategy. A non-dominated sorting algorithm is used for that selection of close neighbours that are defined as neighbours with high coefficient and common neighbours. Further, pruning of useless, incorrect or reserved connections based on the coefficients between the close and sample neighbours are performed. Lastly, inter and intra subspace connections are reserved by the post-process strategy. In the field of IoT and image recognition, the conventional techniques are compared with the proposed post-processing strategies to verify its effectiveness and universality. The clustering accuracy may be improved in the IoT environment while processing the noise data using the proposed strategy as observed in the experimental results.


TecnoLógicas ◽  
2019 ◽  
Vol 22 (46) ◽  
pp. 1-14 ◽  
Author(s):  
Jorge Luis Bacca ◽  
Henry Arguello

Spectral image clustering is an unsupervised classification method which identifies distributions of pixels using spectral information without requiring a previous training stage. The sparse subspace clustering-based methods (SSC) assume that hyperspectral images lie in the union of multiple low-dimensional subspaces.  Using this, SSC groups spectral signatures in different subspaces, expressing each spectral signature as a sparse linear combination of all pixels, ensuring that the non-zero elements belong to the same class. Although these methods have shown good accuracy for unsupervised classification of hyperspectral images, the computational complexity becomes intractable as the number of pixels increases, i.e. when the spatial dimension of the image is large. For this reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image, and later, the clustering results for the missing pixels are obtained by exploiting the spatial information. Specifically, this work proposes two methodologies to remove the pixels, the first one is based on spatial blue noise distribution which reduces the probability to remove cluster of neighboring pixels, and the second is a sub-sampling procedure that eliminates every two contiguous pixels, preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated in three datasets showing that a similar accuracy is obtained when up to 50% of the pixels are removed, in addition, it is up to 7.9 times faster compared to the classification of the data sets without incomplete pixels.


2019 ◽  
Vol 13 (04) ◽  
pp. 1
Author(s):  
Samiran Das ◽  
Sohom Chakraborty ◽  
Aurobinda Routray ◽  
Alok Kanti Deb

Author(s):  
Yaoming Cai ◽  
Zijia Zhang ◽  
Zhihua Cai ◽  
Xiaobo Liu ◽  
Xinwei Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document