A Source-Synchronous Architecture Using Mode-Division Multiplexing for On-Chip Silicon Photonic Interconnects

2016 ◽  
Vol 22 (6) ◽  
pp. 473-481 ◽  
Author(s):  
Christopher Williams ◽  
Behnam Banan ◽  
Glenn Cowan ◽  
Odile Liboiron-Ladouceur
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hongnan Xu ◽  
Chaoyue Liu ◽  
Daoxin Dai ◽  
Yaocheng Shi

Abstract By leveraging mode-division multiplexing (MDM), capacity of on-chip photonic interconnects can be scaled up to an unprecedented level. The demand for dynamic control of mode carriers has led to the development of mode-division multiplexing switches (MDMS), yet the conventional MDMS is incapable of directly accessing an individual lower-order mode that propagates in a multi-mode bus waveguide, which hinders its scalability and flexibility. In this paper, we propose and demonstrate the first direct-access MDMS as a novel platform for scalable on-chip multi-mode networks. At first, the highly efficient mode exchangers are developed for TE0–TE2 and TE1–TE2 mode swap, which are then employed to realize the direct-access mode add-drop multiplexers with high performances. The direct-access MDMS is then achieved based on the proposed mode add-drop multiplexers, which can be used for dynamically adding and dropping any selected mode carrier in a three-channel MDM. Moreover, the novel direct-access scheme is also adopted to simultaneously harness wavelength and mode carriers, leading to a wavelength/mode-hybrid multiplexing system with an enhanced link capacity of twelve channels. To further verify the utility of the MDMS, a multi-mode hubbed-ring network is constructed, where one hub and three nodes are organized within a ring-like multi-mode bus waveguide. The reconfigurable network traffic of 6 × 10 Gbps data streams are obtained by using three eigen modes as signal carriers. The measurement results show low bit-error rates (<10−9) with low power penalties (<3.1 dB).


2017 ◽  
Vol 35 (15) ◽  
pp. 3223-3228 ◽  
Author(s):  
Xinru Wu ◽  
Chaoran Huang ◽  
Ke Xu ◽  
Chester Shu ◽  
Hon Ki Tsang

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Sign in / Sign up

Export Citation Format

Share Document