scholarly journals The necessary yet complex evaluation of 3D city models: a semantic approach

Author(s):  
Oussama Ennafii ◽  
Clement Mallet ◽  
Arnaud Le Bris ◽  
Florent Lafarge
Solar Energy ◽  
2017 ◽  
Vol 146 ◽  
pp. 264-275 ◽  
Author(s):  
Laura Romero Rodríguez ◽  
Eric Duminil ◽  
José Sánchez Ramos ◽  
Ursula Eicker

2021 ◽  
Vol 86 ◽  
pp. 101584
Author(s):  
Ankit Palliwal ◽  
Shuang Song ◽  
Hugh Tiang Wah Tan ◽  
Filip Biljecki

2011 ◽  
Vol 48 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Mathias Jahnke ◽  
Jukka Matthias Krisp ◽  
Holger Kumke
Keyword(s):  

2016 ◽  
Vol 22 (50) ◽  
pp. 369-372
Author(s):  
Yoshitami NONOMURA ◽  
Wataru SHIBAYAMA

Author(s):  
V. Rautenbach ◽  
A. Çöltekin ◽  
S. Coetzee

In this paper we report results from a qualitative user experiment (n=107) designed to contribute to understanding the impact of various levels of complexity (mainly based on levels of detail, i.e., LoD) in 3D city models, specifically on the participants’ orientation and cognitive (mental) maps. The experiment consisted of a number of tasks motivated by spatial cognition theory where participants (among other things) were given orientation tasks, and in one case also produced sketches of a path they ‘travelled’ in a virtual environment. The experiments were conducted in groups, where individuals provided responses on an answer sheet. The preliminary results based on descriptive statistics and qualitative sketch analyses suggest that very little information (i.e., a low LoD model of a smaller area) might have a negative impact on the accuracy of cognitive maps constructed based on a virtual experience. Building an accurate cognitive map is an inherently desired effect of the visualizations in planning tasks, thus the findings are important for understanding how to develop better-suited 3D visualizations such as 3D city models. In this study, we specifically discuss the suitability of different levels of visual complexity for development planning (urban planning), one of the domains where 3D city models are most relevant.


Author(s):  
S. H. Nguyen ◽  
T. H. Kolbe

Abstract. Urban digital twins have been increasingly adopted by cities worldwide. Digital twins, especially semantic 3D city models as key components, have quickly become a crucial platform for urban monitoring, planning, analyses and visualization. However, as the massive influx of data collected from cities accumulates quickly over time, one major problem arises as how to handle different temporal versions of a virtual city model. Many current city modelling deployments lack the capability for automatic and efficient change detection and often replace older city models completely with newer ones. Another crucial task is then to make sense of the detected changes to provide a deep understanding of the progresses made in the cities. Therefore, this research aims to provide a conceptual framework to better assist change detection and interpretation in virtual city models. Firstly, a detailed hierarchical model of all potential changes in semantic 3D city models is proposed. This includes appearance, semantic, geometric, topological, structural, Level of Detail (LoD), auxiliary and scoped changes. In addition, a conceptual approach to modelling most relevant stakeholders in smart cities is presented. Then, a model - reality graph is used to represent both the different groups of stakeholders and types of changes based on their relative interest and relevance. Finally, the study introduces two mathematical methods to represent the relevance relations between stakeholders and changes, namely the relevance graph and the relevance matrix.


Author(s):  
J. Meidow ◽  
H. Hammer ◽  
M. Pohl ◽  
D. Bulatov

Many buildings in 3D city models can be represented by generic models, e.g. boundary representations or polyhedrons, without expressing building-specific knowledge explicitly. Without additional constraints, the bounding faces of these building reconstructions do not feature expected structures such as orthogonality or parallelism. The recognition and enforcement of man-made structures within model instances is one way to enhance 3D city models. Since the reconstructions are derived from uncertain and imprecise data, crisp relations such as orthogonality or parallelism are rarely satisfied exactly. Furthermore, the uncertainty of geometric entities is usually not specified in 3D city models. Therefore, we propose a point sampling which simulates the initial point cloud acquisition by airborne laser scanning and provides estimates for the uncertainties. We present a complete workflow for recognition and enforcement of man-made structures in a given boundary representation. The recognition is performed by hypothesis testing and the enforcement of the detected constraints by a global adjustment of all bounding faces. Since the adjustment changes not only the geometry but also the topology of faces, we obtain improved building models which feature regular structures and a potentially reduced complexity. The feasibility and the usability of the approach are demonstrated with a real data set.


Sign in / Sign up

Export Citation Format

Share Document