Automatic verification of uml state chart by bogor model checking tool: Automatic formal verification of network and distributed systems

Author(s):  
Behzad Soleimani Neysian ◽  
Seyed Morteza Babamir
2019 ◽  
Vol 69 (1) ◽  
pp. 58-64
Author(s):  
KH Kochaleema ◽  
G. Santhoshkumar

A unified modelling language (UML) based formal verification methodology that can be easily integrated into an embedded system software development life cycle is suggested. The approach augments UML diagrams with formal models through an interfacing domain and adds semantics to these diagrams. The suggested methodology; commences from functional specification and use case modelling, selects the most critical behaviour where formal verification can add value to the development cycle, analyses the selected behaviour using UML state transition diagram, derives a state chart matrix from the same, and a high level language software translates the state chart matrix to a labelled transition system. Safety properties are derived from system specifications and are expressed as computation tree logic (CTL) formulae. CTL model-checking algorithm from the literature is used for model- checking. The applicability of the suggested approach is established using a safety critical embedded controller used for deployment and recovery of sensor structures from an airborne platform.


Author(s):  
Diego Marmsoler

AbstractCollaborative embedded systems form groups in which individual systems collaborate to achieve an overall goal. To this end, new systems may join a group and participating systems can leave the group. Classical techniques for the formal modeling and analysis of distributed systems, however, are mainly based on a static notion of systems and thus are often not well suited for the modeling and analysis of collaborative embedded systems. In this chapter, we propose an alternative approach that allows for the verification of dynamically evolving systems and we demonstrate it in terms of a running example: a simple version of an adaptable and flexible factory.


Author(s):  
Eduard Babkin ◽  
Pavel Malyzhenkov ◽  
Marina Ivanova ◽  
Nikita Ponomarev

For over a decade, IT-business alignment has been ranked as a top-priority management concern, but there is little research on practical ways to achieve the alignment. EA development is a continuous iterative process, which implicitly ensures the achievement of a specific IT-business alignment level. Therefore, it is necessary to formalize the requirements for architecture and be able to automatically verify them. The authors propose a new methodology for detecting logical contradictions in enterprise architecture models based on a model checking approach adopted in the context of business modeling. In such a methodology, they use ArchiMate standard for a conceptual enterprise architecture description language which is fully aligned with TOGAF. The authors also offer several important verification queries and demonstrate practical applicability of their approach using a software prototype of the modeling tool which exploits MIT Alloy Analyzer model checking framework integrated with AchiMate Archi workbench.


Sign in / Sign up

Export Citation Format

Share Document