Iterative Approach to TLC Model Checker Application

Author(s):  
Vadym Shkarupylo ◽  
Ihor Blinov ◽  
Alexander Chemeris ◽  
Valentyna Dusheba ◽  
Jamil A. J. Alsayaydeh ◽  
...  
Author(s):  
Natasha Alechina ◽  
Hans van Ditmarsch ◽  
Rustam Galimullin ◽  
Tuo Wang

AbstractCoalition announcement logic (CAL) is one of the family of the logics of quantified announcements. It allows us to reason about what a coalition of agents can achieve by making announcements in the setting where the anti-coalition may have an announcement of their own to preclude the former from reaching its epistemic goals. In this paper, we describe a PSPACE-complete model checking algorithm for CAL that produces winning strategies for coalitions. The algorithm is implemented in a proof-of-concept model checker.


2021 ◽  
Vol 10 (3) ◽  
pp. 42
Author(s):  
Mohammed Al-Nuaimi ◽  
Sapto Wibowo ◽  
Hongyang Qu ◽  
Jonathan Aitken ◽  
Sandor Veres

The evolution of driving technology has recently progressed from active safety features and ADAS systems to fully sensor-guided autonomous driving. Bringing such a vehicle to market requires not only simulation and testing but formal verification to account for all possible traffic scenarios. A new verification approach, which combines the use of two well-known model checkers: model checker for multi-agent systems (MCMAS) and probabilistic model checker (PRISM), is presented for this purpose. The overall structure of our autonomous vehicle (AV) system consists of: (1) A perception system of sensors that feeds data into (2) a rational agent (RA) based on a belief–desire–intention (BDI) architecture, which uses a model of the environment and is connected to the RA for verification of decision-making, and (3) a feedback control systems for following a self-planned path. MCMAS is used to check the consistency and stability of the BDI agent logic during design-time. PRISM is used to provide the RA with the probability of success while it decides to take action during run-time operation. This allows the RA to select movements of the highest probability of success from several generated alternatives. This framework has been tested on a new AV software platform built using the robot operating system (ROS) and virtual reality (VR) Gazebo Simulator. It also includes a parking lot scenario to test the feasibility of this approach in a realistic environment. A practical implementation of the AV system was also carried out on the experimental testbed.


Author(s):  
Hayato Naito ◽  
Tomoyuki Yokogawa ◽  
Nao Igawa ◽  
Sousuke Amasaki ◽  
Hirohisa Aman ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 46
Author(s):  
Harry Esmonde

An iterative approach is taken to develop a fractal topology that can describe the material structure of phase changing materials. Transfer functions and frequency response functions based on fractional calculus are used to describe this topology and then applied to model phase transformations in liquid/solid transitions in physical processes. Three types of transformation are tested experimentally, whipping of cream (rheopexy), solidification of gelatine and melting of ethyl vinyl acetate (EVA). A liquid-type model is used throughout the cream whipping process while liquid and solid models are required for gelatine and EVA to capture the yield characteristic of these materials.


1980 ◽  
Vol 23 (7) ◽  
pp. 1301 ◽  
Author(s):  
Georg Knorr ◽  
Michael Mond

Sign in / Sign up

Export Citation Format

Share Document