Routing and spectrum assignment algorithm with most fragmented path first in elastic optical networks

Author(s):  
Andre Horota ◽  
Larissa Reis ◽  
Gustavo Figueiredo ◽  
Nelson L. S. da Fonseca
2016 ◽  
Vol 14 (6) ◽  
pp. 2980-2986 ◽  
Author(s):  
Andre Horota ◽  
Larissa Reis ◽  
Gustavo Figueiredo ◽  
Nelson Luis Saldanha Fonseca

2022 ◽  
Vol 12 (1) ◽  
pp. 438
Author(s):  
Xiaosong Yu ◽  
Jiye Wang ◽  
Kaixin Zhang ◽  
Jiaqi Lv ◽  
Yongli Zhao ◽  
...  

With the development of optical networks technology, broad attention has been paid to flexible grid technology in optical networks due to its ability to carry large-capacity information as well as provide flexible and fine-grained services through on-demand spectrum resource allocation. However, a one-time green-field deployment of a flexible grid network may not be practical. The transition technology called the fixed/flex-grid optical networks is more applicable and highly pragmatic. In such network, many nodes would likely be upgraded from a fixed-grid to flex-grid. In fact, dynamic service provisioning during the process of a node upgrade in fixed/flex-grid optical networks have become a challenge because the service connection can be easily interrupted, which leads to considerable data loss because of node upgrade. To overcome this challenge, we propose a brown-field migration aware routing and spectrum assignment (BMA-RSA) algorithm in fixed/flex-grid optical networks. The aim is to construct a probabilistic migration label (PML) model. The well-designed label setting of PML can balance the relationship between distance and node-upgrade probability. Dynamic service provisioning operations are undertaken based on the PML model to achieve a migration-aware dynamic connection before network migration occurs. We also evaluate the performance of different service provisioning strategies under different traffic models. The simulation results show that the BMA-RSA algorithm can achieve: (1) the tradeoff between distance and node upgrade probability during the process of service provisioning; (2) lower service interruption compared with the traditional non-migration aware K-shortest-path routing and spectrum assignment algorithm.


Sign in / Sign up

Export Citation Format

Share Document