flexible grid
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 34)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
pp. 438
Author(s):  
Xiaosong Yu ◽  
Jiye Wang ◽  
Kaixin Zhang ◽  
Jiaqi Lv ◽  
Yongli Zhao ◽  
...  

With the development of optical networks technology, broad attention has been paid to flexible grid technology in optical networks due to its ability to carry large-capacity information as well as provide flexible and fine-grained services through on-demand spectrum resource allocation. However, a one-time green-field deployment of a flexible grid network may not be practical. The transition technology called the fixed/flex-grid optical networks is more applicable and highly pragmatic. In such network, many nodes would likely be upgraded from a fixed-grid to flex-grid. In fact, dynamic service provisioning during the process of a node upgrade in fixed/flex-grid optical networks have become a challenge because the service connection can be easily interrupted, which leads to considerable data loss because of node upgrade. To overcome this challenge, we propose a brown-field migration aware routing and spectrum assignment (BMA-RSA) algorithm in fixed/flex-grid optical networks. The aim is to construct a probabilistic migration label (PML) model. The well-designed label setting of PML can balance the relationship between distance and node-upgrade probability. Dynamic service provisioning operations are undertaken based on the PML model to achieve a migration-aware dynamic connection before network migration occurs. We also evaluate the performance of different service provisioning strategies under different traffic models. The simulation results show that the BMA-RSA algorithm can achieve: (1) the tradeoff between distance and node upgrade probability during the process of service provisioning; (2) lower service interruption compared with the traditional non-migration aware K-shortest-path routing and spectrum assignment algorithm.


2021 ◽  
Author(s):  
Varsha Lohani

Variable bandwidth channels can be created in Flexible Grid Optical Networks using Optical Orthogonal Frequency Division Multiplexing (O-OFDM). This allows more efficient use of spectrum by allocating integral multiple of basic bandwidth slot to the lightpath requests. In these networks, the constraint of keeping all the allocated slots together is added when deciding the routes for the requests. This constraint is called the contiguity constraint, which makes the routing and spectrum arrangement algorithms more challenging. In any network, the lightpath requests will arrive and depart dynamically and invariably lead to spectrum fragmentation. Hence network will have to reduce the maximum possible utilization as well as increased blocking probability. In this paper, we have presented an improvised Routing and Spectrum Assignment (RSA) algorithm using consecutive spectrum slots that leads to lesser fragmentation. It is evident from the results that the presented RSA algorithm uses adaptive parameters to reduce the blocking probability and fragmentation compared to the other algorithms reported in the recent past.


2021 ◽  
Author(s):  
Varsha Lohani

Variable bandwidth channels can be created in Flexible Grid Optical Networks using Optical Orthogonal Frequency Division Multiplexing (O-OFDM). This allows more efficient use of spectrum by allocating integral multiple of basic bandwidth slot to the lightpath requests. In these networks, the constraint of keeping all the allocated slots together is added when deciding the routes for the requests. This constraint is called the contiguity constraint, which makes the routing and spectrum arrangement algorithms more challenging. In any network, the lightpath requests will arrive and depart dynamically and invariably lead to spectrum fragmentation. Hence network will have to reduce the maximum possible utilization as well as increased blocking probability. In this paper, we have presented an improvised Routing and Spectrum Assignment (RSA) algorithm using consecutive spectrum slots that leads to lesser fragmentation. It is evident from the results that the presented RSA algorithm uses adaptive parameters to reduce the blocking probability and fragmentation compared to the other algorithms reported in the recent past.


2021 ◽  
pp. 100648
Author(s):  
Matheus R. Sena ◽  
Pedro J. Freire ◽  
Leonardo D. Coelho ◽  
Alex F. Santos ◽  
Antonio Napoli ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2067
Author(s):  
Xiaosong Yu ◽  
Lu Lu ◽  
Yongli Zhao ◽  
Feng Wang ◽  
Avishek Nag ◽  
...  

With the emergence of cloud services based on data centers, demands for bandwidth-intensive applications have increased dramatically, and application services have transferred to a more diversified direction. Management as well as capacity of the backbone network needs further development to catch up with rapidly evolved application demands. Optical network virtualization can facilitate the sharing of physical infrastructure among multiple network applications. Virtual Network Embedding (VNE), the main implementation of network virtualization, determines how to map a virtual network request onto physical substrate. To expand the network capacity, flexible-grid elastic optical networks have been considered as a promising supporting technology for the future infrastructure of the next-generation Internet. However, due to the expense of key enabling equipment for flexible grid optical networks, the brown-field migration from a fixed grid to a flexible grid gave birth to the co-existing fixed/flexible grid. Based on the co-existing fixed/flexible grid optical networks, we investigate the problem of Virtual Optical Network (VON) provisioning, and present a flexible-grid-aware virtual network embedding algorithm to map the virtual networks onto the substrate network. In addition, the performance of the algorithm was evaluated under four different network scenarios. Simulation results show that the proposed algorithm can achieve better performance in all four scenarios.


Sign in / Sign up

Export Citation Format

Share Document