field deployment
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 97)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
pp. 438
Author(s):  
Xiaosong Yu ◽  
Jiye Wang ◽  
Kaixin Zhang ◽  
Jiaqi Lv ◽  
Yongli Zhao ◽  
...  

With the development of optical networks technology, broad attention has been paid to flexible grid technology in optical networks due to its ability to carry large-capacity information as well as provide flexible and fine-grained services through on-demand spectrum resource allocation. However, a one-time green-field deployment of a flexible grid network may not be practical. The transition technology called the fixed/flex-grid optical networks is more applicable and highly pragmatic. In such network, many nodes would likely be upgraded from a fixed-grid to flex-grid. In fact, dynamic service provisioning during the process of a node upgrade in fixed/flex-grid optical networks have become a challenge because the service connection can be easily interrupted, which leads to considerable data loss because of node upgrade. To overcome this challenge, we propose a brown-field migration aware routing and spectrum assignment (BMA-RSA) algorithm in fixed/flex-grid optical networks. The aim is to construct a probabilistic migration label (PML) model. The well-designed label setting of PML can balance the relationship between distance and node-upgrade probability. Dynamic service provisioning operations are undertaken based on the PML model to achieve a migration-aware dynamic connection before network migration occurs. We also evaluate the performance of different service provisioning strategies under different traffic models. The simulation results show that the BMA-RSA algorithm can achieve: (1) the tradeoff between distance and node upgrade probability during the process of service provisioning; (2) lower service interruption compared with the traditional non-migration aware K-shortest-path routing and spectrum assignment algorithm.


2021 ◽  
Author(s):  
Peter Maher ◽  
Carl Nelson ◽  
David Dockweiler

Abstract Running two compression set tools in a single wellbore clean out string, typically a bypass tool and negative test packer, has been a significant industry challenge to operate reliably. The need for running these types of tools is generally driven by the need to perform a negative test on a liner top and achieve high flow rates necessary to hydraulically remove debris from the well. Combining these operations into a single run is an increasingly common method to reduce rig time and cost for the operator. Tools to perform this type of operation are generally available from many service providers, however difficulties and challenges arise when trying to manipulate two different tools in the same string that function by the same compression set method. These operations do have a history that is partially successful, however on a long term basis reliability is generally considered poor by most operators, as a failure to manipulate the tools correctly can result in a failed run and a trip out of the hole. This paper discusses the development and successful field deployment of a system of two compression set tools to address this specific challenge while improving reliability over existing solutions.


Instruments ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 37
Author(s):  
Ram M. Narayanan ◽  
Michael J. Harner ◽  
John R. Jendzurski ◽  
Nicholas G. Paulter

Through-wall and through-barrier motion-sensing systems are becoming increasingly important tools to locate humans concealed behind barriers and under rubble. The sensing performance of these systems is best determined with appropriately designed calibration targets, which are ones that can emulate human motion. The effectiveness of various dynamic calibration targets that emulate human respiration, heart rate, and other body motions were analyzed. Moreover, these targets should be amenable to field deployment and not manifest angular or orientation dependences. The three targets examined in this thesis possess spherical polyhedral geometries. Spherical geometries were selected due to their isotropic radar cross-sectional characteristics, which provide for consistent radar returns independent of the orientation of the radar transceiver relative to the test target. The aspect-independence of a sphere allows for more accurate and repeatable calibration of a radar than using a nonspherical calibration artifact. In addition, the radar cross section (RCS) for scattering spheres is well known and can be calculated using far-field approximations. For Doppler radar testing, it is desired to apply these calibration advantages to a dynamically expanding-and-contracting sphere-like device that can emulate motions of the human body. Monostatic RCS simulations at 3.6 GHz were documented for each geometry. The results provide a visual way of representing the effectiveness of each design as a dynamic calibration target for human detection purposes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayaovi Agbessenou ◽  
Komivi S. Akutse ◽  
Abdullahi A. Yusuf ◽  
Sospeter W. Wekesa ◽  
Fathiya M. Khamis

AbstractTuta absoluta is one of the most devastating pests of Solanaceae crops in Africa. We previously demonstrated the efficacy of Metarhizium anisopliae isolates ICIPE 18, ICIPE 20 and ICIPE 665 against adult T. absoluta. However, adequate strain selection and accurate spatial prediction are fundamental to optimize their efficacy and formulations before field deployment. This study therefore assessed the thermotolerance, conidial yield and virulence (between 15 and 35 °C) of these potent isolates. Over 90% of conidia germinated at 20, 25 and 30 °C while no germination occurred at 15 °C. Growth of the three isolates occurred at all temperatures, but was slower at 15, 33 and 35 °C as compared to 20, 25 and 30 °C. Optimum temperatures for mycelial growth and spore production were 30 and 25 °C, respectively. Furthermore, ICIPE 18 produced higher amount of spores than ICIPE 20 and ICIPE 665. The highest mortality occurred at 30 °C for all the three isolates, while the LT50 values of ICIPE 18 and ICIPE 20 were significantly lower at 25 and 30 °C compared to those of ICIPE 665. Subsequently, several nonlinear equations were fitted to the mortality data to model the virulence of ICIPE 18 and ICIPE 20 against adult T. absoluta using the Entomopathogenic Fungi Application (EPFA) software. Spatial prediction revealed suitable locations for ICIPE 18 and ICIPE 20 deployment against T. absoluta in Kenya, Tanzania and Uganda. Our findings suggest that ICIPE 18 and ICIPE 20 could be considered as effective candidate biopesticides for an improved T. absoluta management based on temperature and location-specific approach.


2021 ◽  
pp. 131276
Author(s):  
Younki Cho ◽  
Kathleen M. Smits ◽  
Stuart N. Riddick ◽  
Daniel J. Zimmerle

Author(s):  
Aditya Sharma ◽  
Saket Srivastava ◽  
Catalin Teodoriu ◽  
Marius Stan

Drilling vibrations has been identified as a key performance limiter that prevents successful energy transfer from the surface to the bit. The resultant irregular bit rotation speed causes drilling challenges like poor hole quality and reduction in rate of penetration to name a few. Amongst other vibration suppression techniques, active control of vibrations is widely used and recommended. Active control system utilizes a closed loop feedback control to continuously adapt to downhole vibrations detected at the surface. The system requires regular tuning and upgrades which is done experimentally before field deployment. The paper presents a PID based experimental tuning of horizontal and vertical strings for irregular RPM. In doing so, the paper highlights the need of having horizontal experimental setups for state-of-the-art PID tuning for downhole RPM. The settling time of irregular RPM for horizontal setup is found to be lower than the vertical configuration due to multiple contact points and increased friction coefficient.


2021 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah Saleh Al-Yami ◽  
Sara AlKhalaf ◽  
Khawlah Abdulaziz Alanqari ◽  
Wajid Ali ◽  
...  

Abstract A good primary cementing job governs in a great part the producing performance of a well. Successful zonal isolation, which is the main objective of any cementing job, primarily depends on the right cement design. The resin-based cement system, which is a relatively new technology within the oil industry has the potential to replace conventional cement in critical primary cementing applications. This paper describes the lab-testing and field deployment of the resin-based cement systems. The resin-based cement systems were deployed in those well sections where a potential high-pressure influx was expected. The resin-based cement system, which was placed as a tail slurry was designed to have better mechanical properties as compared to the conventional cement systems. The paper describes the process used to get the right resin-based cement slurry design and how its application was important to the success of the cementing jobs. The cement job was executed successfully and met all the zonal-isolation objectives. The resin-based cement's increased shear bond strength and better mechanical properties were deemed to be instrumental in providing a reliable barrier that would thwart any future issues arising due to sustained casing pressure (SCP). This paper describes the required lab-testing, lab-evaluation, and the successful field deployment of the resin-based cement systems.


2021 ◽  
Vol 5 (CSCW2) ◽  
pp. 1-37
Author(s):  
C. Estelle Smith ◽  
William Lane ◽  
Hannah Miller Hillberg ◽  
Daniel Kluver ◽  
Loren Terveen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document