A dual frequency microstrip patch antenna for high-precision GPS applications

2004 ◽  
Vol 3 ◽  
pp. 157-160 ◽  
Author(s):  
Boccia ◽  
Amendola ◽  
Di Massa
2001 ◽  
Vol 31 (4) ◽  
pp. 289-292 ◽  
Author(s):  
D. M. de Haaij ◽  
J. Joubert ◽  
W. Odendaal

2003 ◽  
Vol 2 ◽  
pp. 36-39 ◽  
Author(s):  
J. Anguera ◽  
C. Puente ◽  
C. Borja ◽  
N. Delbene ◽  
J. Soler

In paper, a low profile microstrip patch antenna with rhombus model is designed at an running frequency at 2.4 GHz, 5.2 GHz. Microstrip Patch Antenna are suited to non-plane and plane areas, uncomplicated and effortless to design by used Printed Circuit Technology, it is a mechanically vigorous when it is ascended on rigid places and when the particular patch design model and dimension were selected, it has adjustable in view of resonance frequency, radiation design, impedance and polarization. High Frequency Structural Simulator (HFSS) is a definite component method solver for structures of EM (electromagnetic). The outcome values are discussed and analyzed in view of S11 (Return Loss), 3D Polar Plot, Radiation design and Gain. The value of S11 comes out to be -14.16dB for the designed antenna. The antenna measured length is nearly half wavelength in the dielectric, it is a highly censorious parameter, which governs the antenna resonant frequency. And the final values are simulated using High Frequency Structural Simulator


Author(s):  
Akhila John Davuluri ◽  
P. Siddaiah

This paper proposes a microstrip patch antenna (MSPA) in the Ku band for satellite applications. The antenna is small in size with dimensions of about 40 mm×48 mm×1.59 mm and is fed with a coaxial cable of 50 Ω impedance. The proposed antenna has a wide bandwidth of 3.03 GHz ranging from 12.8 GHz to 15.8 GHz. To realize the characteristics of wideband the techniques of defective ground structure (DGS) and etching slots on the radiating element are adopted. The antenna is modeled on the FR4 substrate. A basic circular patch is selected for the design of a dual-frequency operation and in the next step DGS is introduced into the basic antenna and enhanced bandwidth is achieved at both the frequencies. To attain wider bandwidth two slots are etched on the radiating element of which one is a square ring slot and the second one is a circular ring slot. The novelty of the proposed antenna is a miniaturized design and unique response within the Ku band region which is applicable for wireless UWB applications with VSWR <2 and an average gain of 3.6 dB.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012124
Author(s):  
Ravi Shankar Saxena ◽  
S Kavitha ◽  
Ashish Singh ◽  
Anurag Mishra

Abstract In this paper, an analysis of dual frequency resonance antenna is achieved by OM-shape microstrip patch antenna. The proposed antenna is analyzed using IE3D simulation software. The analysis of proposed structure is done by varying the dielectric constants and height of the substrate as well as gain and radiation pattern of the antenna is obtained. It observed that on varying the dielectric substrate the effect on proposed antenna is very effective.


Sign in / Sign up

Export Citation Format

Share Document