substrate material
Recently Published Documents


TOTAL DOCUMENTS

1197
(FIVE YEARS 340)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Vol 1049 ◽  
pp. 24-30
Author(s):  
Anastasiya Gusarova ◽  
Tatiana Kalashnikova ◽  
Denis Gurianov ◽  
Andrey Chumaevskii ◽  
Ksenia Osipovich ◽  
...  

The structure and properties of conically shaped products made of CuCr1 chrome bronze obtained by wire-feed electron beam additive technology have been investigated. The studies show that the organization of the structure in the samples fully corresponds to the peculiarities of the printing process and heat removal from the samples. The structure is represented by large grains elongated in the direction of heat removal. Chromium in the samples is mainly localized in the form of particles located between the dendrite arms. Near the substrate, intense mixing of the bronze with the substrate material (steel 321) is observed. The mechanical properties of the conical and cylindrical sample parts material are at a fairly close level. The samples are characterized by low values of yield strength, low values of tensile strength and high plasticity. Near the substrate, the mechanical properties of the specimens increase.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Lipeng Tan ◽  
Peisheng Liu ◽  
Chenhui She ◽  
Pengpeng Xu ◽  
Lei Yan ◽  
...  

By studying the substrate material, structure, chip distribution, and array form of the multi-chip light-emitting diode (LED) package, the heat-dissipation capacity of the LED package is improved. Finite element analysis and steady-state thermal analysis are used to simulate and analyze LED packages with different materials and structures. Using the theory of LED illuminance and uniformity, the illuminance of some structures is computed. The results show that the change of substrate material and structure can greatly impact heat dissipation, while changing array forms has little effect on heat dissipation. By improving the spatial distribution of the chip, the temperature superposition problem of the substrate is solved, and the illuminance and uniformity are improved while dissipating heat. The LED filaments of the combined, equidistant, chip-distribution mode have improved heat dissipation. The S-type equal difference has the highest illumination and high illumination uniformity.


Author(s):  
Wee Kai Boon ◽  
◽  
Zuhairiah Zainal Abidin ◽  
Adel Yahya Isa Ashyap ◽  
◽  
...  

This paper focuses on developing a microwave metamaterial-based Microstrip Ring Resonator for water quality monitoring. Water pollution is increasing at an alarming rate, worsening pollution and destroying natural habitats. This paper aims to design a metamaterial-based resonator, analyse its performance with various biosamples, and then fabricate the designed product to validate the sensing performance. For this purpose, Computer Simulation Technology (CST) is used to design and simulate the proposed biosensor, with Rogers-RO3003 as the substrate material. In addition, for the proof of concept, different types of liquid materials under test were used in simulation and measurement. The procedures begin with the design and simulation of the MRR using CST, followed by the fabrication stage when the simulation produced the desired results, and finally, laboratory measurements for data collection. The sensing area of the microstrip ring resonator was observed through electric field distribution, where a gap was introduced in the ring structure. The results show that proposed structure of the resonator was able to distinguish different types of liquid that were placed in the sensing gap, by shifting the resonance frequency based on their dielectric constant. In summary, a new metamaterial-based microstrip ring resonator is produced to monitor liquid quality. The concept behind the paper was proven through simulations and experiments where it is suitable to be used as a sensing algorithm. In future work, this product could be used to monitor residue in our clean water, such as river, to minimise the polluted drinking water risk.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1581
Author(s):  
Hao Luo ◽  
Xuefeng Han ◽  
Yuanchao Huang ◽  
Deren Yang ◽  
Xiaodong Pi

SiC crystal is an excellent substrate material for high power electronic devices and high-frequency electronic devices. Being cost-effective and defect-free are the two biggest challenges at present. For the physical vapor transport (PVT) growth of a SiC single crystal, SiC powder is used as the source material, which determines the cost and the quality of the crystal. In this paper, we propose a new design in which graphite blocks are substituted for the non-sublimated SiC powder. Temperature distribution in the SiC powder, the evolution of the SiC powder, and the vapor transport are investigated by using finite element calculations. With the addition of graphite blocks, the utilization and sublimation rate of SiC powder is higher. In addition, the reverse vapor transport above the SiC powder is eliminated. This design provides a new idea to reduce the cost of SiC crystals in industrialization.


Author(s):  
Oksana Gaponova ◽  
Oleksandr Myslyvchenko ◽  
Vitalina Dudchenko

Problem. As a rule, during the operation of the product, the surface layers of materials are most affected. These can be parts that work in aggressive environments, at high temperatures, various force actions, the presence of abrasive particles, etc. Under such conditions, different types of steels and alloys are used, and, most commonly, it is high-alloy, which significantly complicates the manufacturing process and increases the cost of the finished product. Diffusion coating methods are the most widespread in the industry, which is due to the best study and ease of these processes. However, there are alternative methods of surface treatment, which are devoid of the disadvantages of diffusion methods. The goal is to develop a method of obtaining boron-containing coatings of the Al-C-B system by the electro spark alloying (ESA), applying STS to the treated surface, to study the processes of structural and phase formation of surface layers depending on the energy processes of ESA and substrate material. Methology. Samples made of steel 20 and 40 were used for the study, on which a coating consisting of their sulfur ointment, aluminum powder, amorphous boron powder was applied. Without waiting for drying, the ESA surfaces of the samples were carried out with a graphite electrode on an installation with a discharge energy of 0.13, 0.55 and 4.9 J. The surface roughness after treatment was determined on a profilograph-profilometer by removing and processing profilograms. Metallographic analysis of coatings was performed using an MIM-7optical microscope, and durometric studies were made on the PMT-3 device according to standard methods. Results: the article presents the original method for obtaining boron-containing coatings of the Al-C-B system by the ESA method, which involves applying a coating consisting of sulfur ointment, aluminum powder, amorphous boron powder on the treated surface, followed by electric spark doping with a graphite electrode.


Author(s):  
Avinash V Borgaonkar ◽  
Ismail Syed ◽  
Shirish H Sonawane

Molybdenum disulphide (MoS2) is a popularly used solid lubricant in various applications due to its superior tribological behaviour. However, it possesses poor wear resistance which requires further improvement. In the present study efforts have been made to enhance the tribological properties of pure MoS2 coating film by doping TiO2 nanoparticles as a reinforcement material. The Manganese phosphating is selected as a pre-treatment method to improve the bond strength between coating and substrate. The coating is bonded with the substrate material employing sodium silicate as a binder. The effects of wt. % of TiO2 onto the mechanical properties of composite MoS2-TiO2 coating such as hardness and bond strength have been studied. In addition coating microstructure before and after experimental test was studied using optical microscope and scanning electron microscope. It was also found that with increase in wt. % addition of TiO2 upto 15% into MoS2 base matrix, the hardness of coating increases proportionally. Beyond 15 wt. % addition of TiO2, the coating becomes brittle in nature. This leads to reduction in the scratch resistance.


2021 ◽  
Vol 11 (6) ◽  
pp. 7892-7896
Author(s):  
N. Ambati ◽  
G. Immadi ◽  
M. V. Narayana ◽  
K. R. Bareddy ◽  
M. S. Prapurna ◽  
...  

In this study, a three-pole hairpin structure was fabricated on the top of the substrate material and an open loop microstrip structure at the ground to give a modified triple-band BPF with a unique design. A Rogers (RT5880) material with εr = 2.2 and thickness of 1.27mm was used to fabricate the proposed structure. The space between two consecutive hairpin resonators has different distances d1 and d2 with values of 0.2mm and 0.4mm respectively. The proposed filter offers a compact size with low return loss. The equivalent LC circuit of the DGS and hairpin structure is obtained with the Ansys electronic desktop and by using simple circuit analysis. The desired microstrip triple-band BPF operates at the Ku band, resonates at 10.28GHz, 12GHz, and 14.62GHz, while the simulated and experimental results are almost identical. The proposed wideband BPF satisfies the International Telecommunication Union ((ITU) region 3 spectrum requirements. Direct Broadcast Service (DBS) and Fixed Satellite Service (FSS) in transmit mode respectively employ the frequency band 11.41-12.92GHz and 14-14.5GHz.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7529
Author(s):  
Aneta Bartkowska ◽  
Dariusz Bartkowski ◽  
Damian Przestacki ◽  
Mateusz Kukliński ◽  
Andrzej Miklaszewski ◽  
...  

The paper presents the results of studies of microstructure, mechanical and physicochemical properties of surface layers produced by laser modification of the diffusion boron layer on Monel® Alloy 400. The diffusion boron layers were produced at 950 °C for 6 h. The gas-contact method was used in an open retort furnace. The process was carried out in a powder mixture containing B4C carbide as a boron source. The next stage was the modification of the boron layer with a diode laser beam of a nominal power of 3 kW. A constant power of 1400 W of the laser beam was used. The scanning speed was variable (successively 5 m/min, 25 m/min, 50 m/min). In order to determine the best parameters, single tracks were created, after which multiple tracks were prepared using previously selected parameters. It was found that both the diffusion borided layer and the laser modified layer had better properties than the substrate material. Both these processes contributed to an increase in corrosion resistance, hardness and wear resistance. It was also found that laser modification caused a slight deterioration of the properties in comparison with the diffusion borided layer. However, the laser modification process resulted in the production of a much thicker layer.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7443
Author(s):  
Cezary Senderowski ◽  
Andrzej J. Panas ◽  
Bartosz Fikus ◽  
Dariusz Zasada ◽  
Mateusz Kopec ◽  
...  

In this paper, dynamic interactions between the FeAl particles and the gaseous detonation stream during supersonic D-gun spraying (DGS) conditions into the water are discussed in detail. Analytical and numerical models for the prediction of momentum and complex heat exchange, that includes radiative effects of heat transfer between the FeAl particle and the D-gun barrel wall and phase transformations due to melting and evaporation of the FeAl phase, are analyzed. Phase transformations identified during the DGS process impose the limit of FeAl grain size, which is required to maintain a solid state of aggregation during a collision with the substrate material. The identification of the characteristic time values for particle acceleration in the supersonic gas detonation flux, their convective heating and heat diffusion enable to assess the aggregation state of FeAl particles sprayed into water under certain DGS conditions.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022037
Author(s):  
A Sychev ◽  
I Kolesnikov ◽  
A Voropaev ◽  
I Bolshykh

Abstract The application of electron-ion-plasma technologies for increasing the service life of machine parts, tools and technological equipment has been investigated. The technology of vacuum ion-plasma surface treatment is proposed for the deposition of coatings, which makes it possible to create internal, external and combined coatings. The manufacturability of coating methods is largely determined by the level of the developed equipment. The entire technological process of deposition of wear-resistant coatings on parts of friction units is carried out in one cycle on a BRV600F vacuum unit, which is equipped with all the necessary technical means. A method has been developed for the technology of obtaining a superhard carbon-metal coating with desired properties, namely, improving the quality of diamond-like films by changing their structure and composition, while the lower layer should have high adhesion to the substrate material, the middle layer should have high hardness and increased wear resistance, and the upper layer should have good thermal conductivity and heat resistance with low coefficient of friction.


Sign in / Sign up

Export Citation Format

Share Document