circular ring
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 126)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
John Bosco John Paul ◽  
Aruldas Shobha Rekh

<span>A circular ring-shaped metamaterial (CRM) absorber was designed to harvest radio frequency (RF) energy in the ultra-wideband (UWB) frequency band applications. The proposed metamaterial unit cell features a circular shaped structure, with rectangular strip lines connected in the form of a cross leaving a square shaped slot at center. The unit cell dimensions are 15×15×1.6 mm. The absorber was etched on a low cost FR4 substrate having a dielectric constant of 4.4. Ansys high frequency structure simulator (HFSS) software was used for simulation and the analysis were carried out for unit cell, 2×2, 3×3, and 4×4 array structures. The absorber parameters plotted are absorption characteristics and reflection characteristics. Also, the metamaterial parameters (μeff) and (εeff) are also retrieved from the absorber parameters and analyzed. From the analysis, the values (μeff) and (εeff) were found to be negative, leaving refractive index also negative (n&lt;0), which proved the metamaterial property. The proposed CRM absorber showed good absorption characteristics of more than 80% and also metamaterial property in the entire UWB band (4-13 GHz). Hence the absorber proves to be a good candidate in powering low power sensors/microcontrollers for internet of things (IoT) applications.</span>


2022 ◽  
Vol 1211 (1) ◽  
pp. 012023
Author(s):  
A A Afanasev ◽  
V S Genin ◽  
L N Vasileva ◽  
V G Grigorev

Abstract A mathematical model of the magnetic field in the working gap of a brushless motor is considered in a case of rotor misalignment arising during manufacture, for example, due to defects in end shields, or in operation due to bearing wear. a gap in a uniform (circular ring). The stator gearing is taken into account on average using the Carter coefficient, the magnetic field in the inhomogeneous air gap, created by the rotor magnets and the stator winding current, is assumed to be plane-parallel, having a two-dimensional character. It was found that the rotor misalignment associated with the rotational movement of the eccentricity causes nonsinusoidality of the idle EMF and pulsation of the electromagnetic moment with a frequency 3p times higher than the rotor speed. When the eccentricity is stationary, a variable EMF is induced along the rotor shaft, causing an alternating current in the circuit: shaft-bearings-bearing shields-stator housing. To clarify the nature of the defect in order to identify the actual misalignment of the rotor, it is recommended to control currents and voltages using specialized software and hardware complexes for spectrum analysis.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 70
Author(s):  
Yuriy Povstenko ◽  
Tamara Kyrylych ◽  
Bożena Woźna-Szcześniak ◽  
Renata Kawa ◽  
Andrzej Yatsko

In a real solid there are different types of defects. During sudden cooling, near cracks, there can appear high thermal stresses. In this paper, the time-fractional heat conduction equation is studied in an infinite space with an external circular crack with the interior radius R in the case of axial symmetry. The surfaces of a crack are exposed to the constant heat flux loading in a circular ring R<r<ρ. The stress intensity factor is calculated as a function of the order of time-derivative, time, and the size of a circular ring and is presented graphically.


2021 ◽  
Vol 7 ◽  
pp. 32-40
Author(s):  
Zawar H. Khan ◽  
T. Aaron Gulliver ◽  
Khurram S. Khattak

A new model is proposed to characterize changes in traffic at transitions. These changes are affected by driver response. The distance headway between vehicles is considered as it affects driver behavior. Driver response is quick with a small distance headway and slow when the distance headway is large. The variations in traffic are greater with a slow driver while traffic is smooth with a quick driver. A model is developed which characterizes traffic based on driver response and distance headway. This model is compared with the well-known and widely employed Zhang and PW models. The Zhang model characterizes driver response at transitions using an equilibrium velocity distribution and ignores distance headway and driver response. Traffic flow in the PW model is characterized using only a velocity constant. Roe decomposition is employed to evaluate the Zhang, PW, and proposed models over a 270 m circular (ring) road. Results are presented which show that Zhang model provides unrealistic results. The corresponding behavior with the proposed model has large variations in flow with a slow driver but is smooth with a quick driver. The PW model provides smooth changes in flow according to the velocity constant, but the behavior is unrealistic because it is not based on traffic physics. Doi: 10.28991/CEJ-SP2021-07-03 Full Text: PDF


2021 ◽  
pp. 80-84
Author(s):  
N.P. Gadetski ◽  
V.G. Korenev ◽  
A.N. Lebedenko ◽  
I.I. Magda ◽  
O.G. Melezhik ◽  
...  

The relativistic magnetrons operating at millimeter wavelengths demonstrate problems with microwave power extraction, both in the radial and in axial direction. The preferred axial extraction concept can be implemented ei-ther as ‘diffractional output’ or via introduction of additional resonant elements into the output waveguide. In this paper several solutions for axial-directed extraction are discussed, including circular ring ‘antennas’ at the end of the anode-cathode space, and resonance-length rods at the faces of the anode-block cavities. These have allowed increasing the power extraction efficiency by a factor of 101 to 102.


2021 ◽  
Vol 122 ◽  
pp. 111678
Author(s):  
Mehdi Kamari ◽  
Mohsen Hayati ◽  
Saba Khosravi

2021 ◽  
Vol 2128 (1) ◽  
pp. 012007
Author(s):  
Sherif El Dyasti ◽  
Maged Medhat Mostafa ◽  
Prof. Hussien Ghoz ◽  
Mohamed Fathy Abo Sree

Abstract In this work, a circular patch antenna is designed and a parametric study in terms of different geometrical parameters is conducted. As a second step, a parasitic chip is introduced on top of the proposed circular patch antenna in the aim to enhance the gain and antenna efficiency. The proposed antenna operates at 25.61 GHz (With a frequency range between24.383 GHz and 27.7 GHz), suitable for 5G applications. The antenna modelling with and without parasitic chip, along with the performance analysis is conducted with CST Studio Electromagnetic (EM) simulator software. A compact size of 10×10×1.547 mm3, easy to fabricate, broadband characteristics up to 3.31 GHz with a high gain up to 6.87 dB, total efficiency of 95 % and a minimum return loss low than -68.02 dB covering the operating frequency range. Lastly, to investigate and validate the antenna overall performance, both frequency and time domain-based simulation is performed, and a good agreement is obtained.


Sign in / Sign up

Export Citation Format

Share Document