Service Provisioning for IoT Applications with Multiple Sources in Mobile Edge Computing

Author(s):  
Jing Li ◽  
Weifa Liang ◽  
Zichuan Xu ◽  
Wanlei Zhou
2022 ◽  
Vol 18 (2) ◽  
pp. 1-25
Author(s):  
Jing Li ◽  
Weifa Liang ◽  
Zichuan Xu ◽  
Xiaohua Jia ◽  
Wanlei Zhou

We are embracing an era of Internet of Things (IoT). The latency brought by unstable wireless networks caused by limited resources of IoT devices seriously impacts the quality of services of users, particularly the service delay they experienced. Mobile Edge Computing (MEC) technology provides promising solutions to delay-sensitive IoT applications, where cloudlets (edge servers) are co-located with wireless access points in the proximity of IoT devices. The service response latency for IoT applications can be significantly shortened due to that their data processing can be performed in a local MEC network. Meanwhile, most IoT applications usually impose Service Function Chain (SFC) enforcement on their data transmission, where each data packet from its source gateway of an IoT device to the destination (a cloudlet) of the IoT application must pass through each Virtual Network Function (VNF) in the SFC in an MEC network. However, little attention has been paid on such a service provisioning of multi-source IoT applications in an MEC network with SFC enforcement. In this article, we study service provisioning in an MEC network for multi-source IoT applications with SFC requirements and aiming at minimizing the cost of such service provisioning, where each IoT application has multiple data streams from different sources to be uploaded to a location (cloudlet) in the MEC network for aggregation, processing, and storage purposes. To this end, we first formulate two novel optimization problems: the cost minimization problem of service provisioning for a single multi-source IoT application, and the service provisioning problem for a set of multi-source IoT applications, respectively, and show that both problems are NP-hard. Second, we propose a service provisioning framework in the MEC network for multi-source IoT applications that consists of uploading stream data from multiple sources of the IoT application to the MEC network, data stream aggregation and routing through the VNF instance placement and sharing, and workload balancing among cloudlets. Third, we devise an efficient algorithm for the cost minimization problem built upon the proposed service provisioning framework, and further extend the solution for the service provisioning problem of a set of multi-source IoT applications. We finally evaluate the performance of the proposed algorithms through experimental simulations. Simulation results demonstrate that the proposed algorithms are promising.


Author(s):  
Cheng Zhan ◽  
Han Hu ◽  
Zhi Liu ◽  
Zhi Wang ◽  
Shiwen Mao

Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 148
Author(s):  
Yassine Yazid ◽  
Imad Ez-Zazi ◽  
Antonio Guerrero-González ◽  
Ahmed El Oualkadi ◽  
Mounir Arioua

Unmanned aerial vehicles (UAVs) are becoming integrated into a wide range of modern IoT applications. The growing number of networked IoT devices generates a large amount of data. However, processing and memorizing this massive volume of data at local nodes have been deemed critical challenges, especially when using artificial intelligence (AI) systems to extract and exploit valuable information. In this context, mobile edge computing (MEC) has emerged as a way to bring cloud computing (CC) processes within reach of users, to address computation-intensive offloading and latency issues. This paper provides a comprehensive review of the most relevant research works related to UAV technology applications in terms of enabled or assisted MEC architectures. It details the utility of UAV-enabled MEC architecture regarding emerging IoT applications and the role of both deep learning (DL) and machine learning (ML) in meeting various limitations related to latency, task offloading, energy demand, and security. Furthermore, throughout this article, the reader gains an insight into the future of UAV-enabled MEC, the advantages and the critical challenges to be tackled when using AI.


Author(s):  
Hasnain Ali Almashhadani ◽  
Xiaoheng Deng ◽  
Suhaib Najeh Abdul Latif ◽  
Mohammed Mohsin Ibrahim ◽  
Osama H. Ridha AL-hwaidi

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 153862-153871
Author(s):  
Wanli Zhang ◽  
Xianwei Li ◽  
Liang Zhao ◽  
Xiaoying Yang ◽  
Tao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document