Service Provisioning for Multi-source IoT Applications in Mobile Edge Computing

2022 ◽  
Vol 18 (2) ◽  
pp. 1-25
Author(s):  
Jing Li ◽  
Weifa Liang ◽  
Zichuan Xu ◽  
Xiaohua Jia ◽  
Wanlei Zhou

We are embracing an era of Internet of Things (IoT). The latency brought by unstable wireless networks caused by limited resources of IoT devices seriously impacts the quality of services of users, particularly the service delay they experienced. Mobile Edge Computing (MEC) technology provides promising solutions to delay-sensitive IoT applications, where cloudlets (edge servers) are co-located with wireless access points in the proximity of IoT devices. The service response latency for IoT applications can be significantly shortened due to that their data processing can be performed in a local MEC network. Meanwhile, most IoT applications usually impose Service Function Chain (SFC) enforcement on their data transmission, where each data packet from its source gateway of an IoT device to the destination (a cloudlet) of the IoT application must pass through each Virtual Network Function (VNF) in the SFC in an MEC network. However, little attention has been paid on such a service provisioning of multi-source IoT applications in an MEC network with SFC enforcement. In this article, we study service provisioning in an MEC network for multi-source IoT applications with SFC requirements and aiming at minimizing the cost of such service provisioning, where each IoT application has multiple data streams from different sources to be uploaded to a location (cloudlet) in the MEC network for aggregation, processing, and storage purposes. To this end, we first formulate two novel optimization problems: the cost minimization problem of service provisioning for a single multi-source IoT application, and the service provisioning problem for a set of multi-source IoT applications, respectively, and show that both problems are NP-hard. Second, we propose a service provisioning framework in the MEC network for multi-source IoT applications that consists of uploading stream data from multiple sources of the IoT application to the MEC network, data stream aggregation and routing through the VNF instance placement and sharing, and workload balancing among cloudlets. Third, we devise an efficient algorithm for the cost minimization problem built upon the proposed service provisioning framework, and further extend the solution for the service provisioning problem of a set of multi-source IoT applications. We finally evaluate the performance of the proposed algorithms through experimental simulations. Simulation results demonstrate that the proposed algorithms are promising.

Author(s):  
Yaru Fu ◽  
Xiaolong Yang ◽  
Peng Yang ◽  
Angus K. Y. Wong ◽  
Zheng Shi ◽  
...  

AbstractThe energy cost minimization for mission-critical internet-of-things (IoT) in mobile edge computing (MEC) system is investigated in this work. Therein, short data packets are transmitted between the IoT devices and the access points (APs) to reduce transmission latency and prolong the battery life of the IoT devices. The effects of short-packet transmission on the radio resource allocation is explicitly revealed. We mathematically formulate the energy cost minimization problem as a mixed-integer non-linear programming (MINLP) problem, which is difficult to solve in an optimal way. More specifically, the difficulty is essentially derived from the coupling of the binary offloading variables and the resource management among all the IoT devices. For analytical tractability, we decouple the mixed-integer and non-convex optimization problem into two sub-problems, namely, the task offloading decision-making and the resource optimization problems, respectively. It is proved that the resource allocation problem for IoT devices under the fixed offloading strategy is convex. On this basis, an iterative algorithm is designed, whose performance is comparable to the best solution for exhaustive search, and aims to jointly optimize the offloading strategy and resource allocation. Simulation results verify the convergence performance and energy-saving function of the designed joint optimization algorithm. Compared with the extensive baselines under comprehensive parameter settings, the algorithm has better energy-saving effects.


2020 ◽  
Author(s):  
Yaru Fu ◽  
Xiaolong Yang ◽  
Peng Yang ◽  
Angus K. Y. Wong ◽  
Zheng Shi ◽  
...  

Abstract The energy cost minimization for mission-critical internet-of-things (IoT) in mobile edge computing (MEC) system is investigated in this work. Therein, short data packets are transmitted between the IoT devices and the access points (APs) to reduce transmission latency and prolong the battery life of the IoT devices. The effects of short-packet transmission on the radio resource allocation is explicitly revealed. We mathematically formulate the energy cost minimization problem as a mixed-integer non-linear programming (MINLP) problem, which is difficult to solve in an optimal way. More specifically, the difficulty is essentially derived from the coupling of the binary offloading variables and the resource management among all the IoT devices. For analytical tractability, we decouple the mixed-integer and non-convex optimization problem into two sub-problems, namely, the task offloading decision-making and the resource optimization problems, respectively. It is proved that the resource allocation problem for IoT devices under the fixed offloading strategy is convex. On this basis, an iterative algorithm is designed, whose performance is comparable to the best solution for exhaustive search, and aims to jointly optimize the offloading strategy and resource allocation. Simulation results verify the convergence performance and energy-saving function of the designed joint optimization algorithm. Compared with the extensive baselines under comprehensive parameter settings, the algorithm has better energy-saving effects.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 148
Author(s):  
Yassine Yazid ◽  
Imad Ez-Zazi ◽  
Antonio Guerrero-González ◽  
Ahmed El Oualkadi ◽  
Mounir Arioua

Unmanned aerial vehicles (UAVs) are becoming integrated into a wide range of modern IoT applications. The growing number of networked IoT devices generates a large amount of data. However, processing and memorizing this massive volume of data at local nodes have been deemed critical challenges, especially when using artificial intelligence (AI) systems to extract and exploit valuable information. In this context, mobile edge computing (MEC) has emerged as a way to bring cloud computing (CC) processes within reach of users, to address computation-intensive offloading and latency issues. This paper provides a comprehensive review of the most relevant research works related to UAV technology applications in terms of enabled or assisted MEC architectures. It details the utility of UAV-enabled MEC architecture regarding emerging IoT applications and the role of both deep learning (DL) and machine learning (ML) in meeting various limitations related to latency, task offloading, energy demand, and security. Furthermore, throughout this article, the reader gains an insight into the future of UAV-enabled MEC, the advantages and the critical challenges to be tackled when using AI.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2914
Author(s):  
Julio C. S. dos Anjos ◽  
João L. G. Gross ◽  
Kassiano J. Matteussi ◽  
Gabriel V. González ◽  
Valderi R. Q. Leithardt ◽  
...  

Advances in communication technologies have made the interaction of small devices, such as smartphones, wearables, and sensors, scattered on the Internet, bringing a whole new set of complex applications with ever greater task processing needs. These Internet of things (IoT) devices run on batteries with strict energy restrictions. They tend to offload task processing to remote servers, usually to cloud computing (CC) in datacenters geographically located away from the IoT device. In such a context, this work proposes a dynamic cost model to minimize energy consumption and task processing time for IoT scenarios in mobile edge computing environments. Our approach allows for a detailed cost model, with an algorithm called TEMS that considers energy, time consumed during processing, the cost of data transmission, and energy in idle devices. The task scheduling chooses among cloud or mobile edge computing (MEC) server or local IoT devices to achieve better execution time with lower cost. The simulated environment evaluation saved up to 51.6% energy consumption and improved task completion time up to 86.6%.


Author(s):  
Julio Cesar Santos dos Anjos ◽  
João Luiz Grave Gross ◽  
Kassiano Jose Matteussi ◽  
Gabriel Villarrubia González ◽  
Valderi Reis Quietinho Leithardt ◽  
...  

Advances in communication technologies have made the interaction of small devices, such as smartphones, wearables, and sensors, scattered on the Internet, bringing a whole new set of complex applications with ever greater task processing needs. These Internet of Things (IoT) devices run on batteries with strict energy restrictions. They tend to offload task processing to remote servers, usually to Cloud Computing (CC) in datacenters geographically located away from the IoT device. In such a context, this work proposes a dynamic cost model to minimize energy consumption and task processing time for IoT scenarios in Mobile Edge Computing environments. Our approach allows for a detailed cost model, with an algorithm called TEMS that considers energy, time consumed during processing, the cost of data transmission, and energy in idle devices. The task scheduling chooses among Cloud or Mobile Edge Computing (MEC) server or local IoT devices to better execution time with lower cost. The simulated environment evaluation saved up to 51.6% energy consumption and improved task completion time up to 86.6%.


2021 ◽  
Vol 12 (1) ◽  
pp. 37-48
Author(s):  
Vedran Kojic ◽  
Zrinka Lukac ◽  
Krunoslav Puljic

Whenever a firm is maximizing its profit, it necessarily has to minimize its cost. Thus, the cost minimization problem is one of the central problems in the theory of the firm. When presenting this problem, the majority of microeconomic textbooks use very well-known production functions, such as Leontief, Cobb-Douglas, or other CES production functions. The goal of this paper is to analyze the cost minimization problem with the generalized Sato production function. The generalized Sato production function is one of the non-standard production functions with variable elasticity of substitution. First, we show that the generalized Sato production function is continuous, strictly monotone, strictly quasiconcave and that a positive amount of output requires positive amounts of some of the inputs. Next, by using mathematical programming we show that the cost minimization problem with generalized Sato production function has a unique solution. This result is very important since it implies the existence of the corresponding cost function and conditional input demands.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4798
Author(s):  
Fangni Chen ◽  
Anding Wang ◽  
Yu Zhang ◽  
Zhengwei Ni ◽  
Jingyu Hua

With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 594 ◽  
Author(s):  
Tri Nguyen ◽  
Tien-Dung Nguyen ◽  
Van Nguyen ◽  
Xuan-Qui Pham ◽  
Eui-Nam Huh

By bringing the computation and storage resources close proximity to the mobile network edge, mobile edge computing (MEC) is a key enabling technology for satisfying the Internet of Vehicles (IoV) infotainment applications’ requirements, e.g., video streaming service (VSA). However, the explosive growth of mobile video traffic brings challenges for video streaming providers (VSPs). One known issue is that a huge traffic burden on the vehicular network leads to increasing VSP costs for providing VSA to mobile users (i.e., autonomous vehicles). To address this issue, an efficient resource sharing scheme between underutilized vehicular resources is a promising solution to reduce the cost of serving VSA in the vehicular network. Therefore, we propose a new VSA model based on the lower cost of obtaining data from vehicles and then minimize the VSP’s cost. By using existing data resources from nearby vehicles, our proposal can reduce the cost of providing video service to mobile users. Specifically, we formulate our problem as mixed integer nonlinear programming (MINP) in order to calculate the total payment of the VSP. In addition, we introduce an incentive mechanism to encourage users to rent its resources. Our solution represents a strategy to optimize the VSP serving cost under the quality of service (QoS) requirements. Simulation results demonstrate that our proposed mechanism is possible to achieve up to 21% and 11% cost-savings in terms of the request arrival rate and vehicle speed, in comparison with other existing schemes, respectively.


2020 ◽  
Author(s):  
João Luiz Grave Gross ◽  
Cláudio Fernando Fernando Resin Geyer

In a scenario with increasingly mobile devices connected to the Internet, data-intensive applications and energy consumption limited by battery capacity, we propose a cost minimization model for IoT devices in a Mobile Edge Computing (MEC) architecture with the main objective of reducing total energy consumption and total elapsed times from task creation to conclusion. The cost model is implemented using the TEMS (Time and Energy Minimization Scheduler) scheduling algorithm and validated with simulation. The results show that it is possible to reduce the energy consumed in the system by up to 51.61% and the total elapsed time by up to 86.65% in the simulated cases with the parameters and characteristics defined in each experiment.


Sign in / Sign up

Export Citation Format

Share Document