Wavelength conversion in WDM optical networks: a comparison among different devices based on semiconductor amplifiers

Author(s):  
E. Iannone ◽  
R. Sabella
2006 ◽  
Vol 3 (3-4) ◽  
pp. 173-190 ◽  
Author(s):  
Vinh Trong Le ◽  
Xiaohong Jiang ◽  
Son Hong Ngo ◽  
Susumu Horiguchi ◽  
Yasushi Inoguchi

2011 ◽  
Vol 474-476 ◽  
pp. 1479-1482
Author(s):  
Ning Zhang

In this paper, we analyze the optical network with wavelength conversion, and discuss the architecture of network with wavelength converter in its node. The optical cross connects technology for wavelength division multiplexing (WDM) is rapidly developing. Wavelength conversion is one of the key techniques for switch WDM optical networks. The wavelength conversion technology can achieve wavelength reuse, decrease wavelength competition, enhance network flexibility and scalability, and simplify network structure and management. The results show that If these cross-connectors feature integrated with wavelength conversion, network will be better able to play the full potential of WDM optical networks.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract Optical nonlinearities give rise to many ubiquitous effects in optical fibres ’. These effects are interesting in themselves and can be detrimental in optical communication. In the Dense Wave length division multiplexing system (DWDM) the nonlinear effects plays important role .DWDM system offers component reliability, system availability and system margin. DWDM system carries different channels. Hence power level carried by fiber increases which generates nonlinear effect such as SPM, XPM, SRS, SBS and FWM. Four wave mixing (FWM) is one of the most troubling issues. The FWM gives crosstalk in DWDM system whose channel spacing is narrow. Wavelength exchanging enables data swapping between two different wavelengths simultaneously. These phenomena have been used in many applications in Wavelength Division Multiplexing (WDM) optical networks such as, wavelength conversion, wavelength sampling, optical 3R, optical interconnects and optical add-drop multiplexing.


Sign in / Sign up

Export Citation Format

Share Document