wavelength converter
Recently Published Documents


TOTAL DOCUMENTS

765
(FIVE YEARS 37)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Yazan Alkhlefat ◽  
Sevia Mahdaliza Idrus Sutan Nameh ◽  
Farabi M. Iqbal

Current and future wireless communication systems are designed to achieve the user’s demands such as high data rate and high speed with low latency and simultaneously to save bandwidth and spectrum. In 5G and 6G networks, a high speed of transmitting and switching is required for internet of things (IoT) applications with higher capacity. To achieve these requirements a semiconductor optical amplifier (SOA) is considered as a wavelength converter to transmit a signal with an orthogonal frequency division multiplexing with subcarrier power modulation (OFDM-SPM). It exploits the subcarrier’s power in conventional OFDM block in order to send additional bits beside the normally transmitted bits. In this paper, we optimized the SOA’s parameters to have efficient wavelength conversion process. These parameters are included the injection current (IC) of SOA, power of pump and probe signals. A 7 Gbps OFDM-SPM signal with a millimeter waves (MMW) carrier of 80 GHz is considered for signal switching. The simulation results investigated and analyzed the performance of the designed system in terms of error vector magnitude (EVM), bit error rate (BER) and optical signal-to-noise ratio (OSNR). The optimum value of IC is 0.6 A while probe power is 9.45 and 8.9 dBm for pump power. The simulation is executed by virtual photonic integrated (VPI) software.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Hongyan Yang ◽  
Yunzheng Wang ◽  
Zian Cheak Tiu ◽  
Sin Jin Tan ◽  
Libo Yuan ◽  
...  

In the advancement of photonics technologies, all-optical systems are highly demanded in ultrafast photonics, signal processing, optical sensing and optical communication systems. All-optical devices are the core elements to realize the next generation of photonics integration system and optical interconnection. Thus, the exploration of new optoelectronics materials that exhibit different optical properties is a highlighted research direction. The emerging two-dimensional (2D) materials such as graphene, black phosphorus (BP), transition metal dichalcogenides (TMDs) and MXene have proved great potential in the evolution of photonics technologies. The optical properties of 2D materials comprising the energy bandgap, third-order nonlinearity, nonlinear absorption and thermo-optics coefficient can be tailored for different optical applications. Over the past decade, the explorations of 2D materials in photonics applications have extended to all-optical modulators, all-optical switches, an all-optical wavelength converter, covering the visible, near-infrared and Terahertz wavelength range. Herein, we review different types of 2D materials, their fabrication processes and optical properties. In addition, we also summarize the recent advances of all-optical modulation based on 2D materials. Finally, we conclude on the perspectives on and challenges of the future development of the 2D material-based all-optical devices.


Author(s):  
Amanvon Ferdinand Atta ◽  
Bernard Cousin ◽  
Joël Christian Adépo ◽  
Souleymane Oumtanaga

Author(s):  
Joël Christian Adépo ◽  
Souleymane Oumtanaga ◽  
Bernard Cousin ◽  
Amanvon Ferdinand ATTA

Author(s):  
Jiao Chi ◽  
Hongjun Liu ◽  
Zhaolu Wang ◽  
Nan Huang

Abstract Graphene plasmons with enhanced localized electric field have been used for boosting the light-matter interaction in linear optical nano-devices. Meanwhile, graphene is an excellent nonlinear material for several third-order nonlinear processes. We present a theoretical investigation of the mechanism of plasmon-enhanced third-order nonlinearity susceptibility of graphene nanoribbons. It is demonstrated that the third-order nonlinearity susceptibility of graphene nanoribbons with excited graphene surface plasmon polaritons can be an order of magnitude larger than the intrinsic susceptibility of a continuous graphene sheet. Combining these properties with the relaxed phase matching condition due to the ultrathin graphene, we propose a novel plasmon-enhanced mid-infrared wavelength converter with arrays of graphene nanoribbons. The wavelength of sig-nal light is in mid-infrared range, which can excite the tunable surface plasmon polaritons in arrays of graphene nanoribbons. The efficiency of the converter from mid-infrared to near-infrared wavelength can be remarkably improved by 60 times compared with the graphene sheet without graphene plasmons. This work provides a novel idea for the efficient application of graphene in the nonlinear optical nano-devices. The proposed mid-infrared wavelength converter is compact, tunable and has promising potential in graphene-based mid-infrared detector with high detection efficiency.


2021 ◽  
Author(s):  
Jia-Min Gong ◽  
Yun-Sheng Zhang ◽  
Ze-Hao Zhu ◽  
Fang Liu ◽  
Yi-Jie Wu ◽  
...  

2021 ◽  
Author(s):  
Lei Du ◽  
Xiaobo Ding ◽  
Dong-Dong Han ◽  
Lu Sui ◽  
Zonghui Tao ◽  
...  

2021 ◽  
Author(s):  
valarmathi marudhai ◽  
Shanthi Prince ◽  
Shayna Kumari

Abstract With the latest technological advancements and attractive features of next generation intelligent optical networks such as high bandwidth, low power consumption, and low transmission loss, etc., they have been considered as most viable solution to satisfy promptly growing bandwidth demands. However, main optical network components bring forth a set of security challenges and reliability issues, accompanied by new vulnerabilities within the network. This paper proposes a new design for an optical encryption and decryption method for enhancing optical network security using p-i-n photodiode which generates Pseudo Random Binary Sequence (PRBS) as a shot noise fluctuations and wavelength converter based design using Semiconductor Optical Amplifier (SOA) based XOR gate which utilizes Cross-Phase Modulation (XPM). The system performance based on Bit Error Rate (BER) and Q factor are analyzed at different data rates for different link lengths up to 100 km using OptiSystem. It is observed that error free transmission with a BER of 10-12 is achieved a data rate of 10Gbps for a link length of only 30 Km for the system with PIN photodiode’s shot noise being used for PRBS sequence generation. However, wavelength conversion based system enables transmission of signal at 10Gbps signal up to a link length of 90Km.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 211
Author(s):  
Amanvon Ferdinand Atta ◽  
Joël Christian Adépo ◽  
Bernard Cousin ◽  
Souleymane Oumtanaga

Network reconfiguration is an important mechanism for network operators to optimize network performance and optical flow transfer. It concerns unicast and multicast connections. Multicast connections are required to meet the bandwidth requirements of multicast applications, such as Internet Protocol-based TeleVision (IPTV), distance learning, and telemedicine. In optical networks, a multicast connection is made possible by the creation of an optical tree-shaped path called a light-tree. The problem of light-tree pair reconfiguration is addressed in this study. Given an initial light-tree used to transfer an optical flow and a final light-tree that is computed by the network operator to optimize network performance, the goal is to migrate the optical flow from the initial light-tree to the final light-tree without flow interruption. Flow interruption is not desirable for network operators because it forces them to pay financial penalties to their customers. To solve this problem, existing methods use a branch approach that is inefficient if some network nodes do not have wavelength conversion capability. Therefore, we proposed in this study a sub-tree-based method. This approach selects and configures sub-tree pairs from the light-tree pair (initial light-tree, final light-tree) to be reconfigured. Then, we produce a sequence of configurations. The performance study confirms that our method is efficient in solving the problem of light-tree pair reconfiguration because our method does not cause flow interruption.


Sign in / Sign up

Export Citation Format

Share Document