Unit commitment using the ant colony search algorithm

Author(s):  
N.S. Sisworahardjo ◽  
A.A. El-Keib
Author(s):  
M. Y. El-Sharkh ◽  
N. S. Sisworahardjo ◽  
A. A. El-Keib ◽  
A. Rahman

2018 ◽  
Vol 228 ◽  
pp. 01010
Author(s):  
Miaomiao Wang ◽  
Zhenglin Li ◽  
Qing Zhao ◽  
Fuyuan Si ◽  
Dianfang Huang

The classical ant colony algorithm has the disadvantages of initial search blindness, slow convergence speed and easy to fall into local optimum when applied to mobile robot path planning. This paper presents an improved ant colony algorithm in order to solve these disadvantages. First, the algorithm use A* search algorithm for initial search to generate uneven initial pheromone distribution to solve the initial search blindness problem. At the same time, the algorithm also limits the pheromone concentration to avoid local optimum. Then, the algorithm optimizes the transfer probability and adopts the pheromone update rule of "incentive and suppression strategy" to accelerate the convergence speed. Finally, the algorithm builds an adaptive model of pheromone coefficient to make the pheromone coefficient adjustment self-adaptive to avoid falling into a local minimum. The results proved that the proposed algorithm is practical and effective.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2675 ◽  
Author(s):  
Yang Zhang ◽  
Huihui Zhao ◽  
Yuming Cao ◽  
Qinhuo Liu ◽  
Zhanfeng Shen ◽  
...  

The development of remote sensing and intelligent algorithms create an opportunity to include ad hoc technology in the heating route design area. In this paper, classification maps and heating route planning regulations are introduced to create the fitness function. Modifications of ant colony optimization and the cuckoo search algorithm, as well as a hybridization of the two algorithms, are proposed to solve the specific Zhuozhou–Fangshan heating route design. Compared to the fitness function value of the manual route (234.300), the best route selected by modified ant colony optimization (ACO) was 232.343, and the elapsed time for one solution was approximately 1.93 ms. Meanwhile, the best route selected by modified Cuckoo Search (CS) was 244.247, and the elapsed time for one solution was approximately 0.794 ms. The modified ant colony optimization algorithm can find the route with smaller fitness function value, while the modified cuckoo search algorithm can find the route overlapped to the manual selected route better. The modified cuckoo search algorithm runs more quickly but easily sticks into the premature convergence. Additionally, the best route selected by the hybrid ant colony and cuckoo search algorithm is the same as the modified ant colony optimization algorithm (232.343), but with higher efficiency and better stability.


Sign in / Sign up

Export Citation Format

Share Document