Multi-Vision Network for Accurate and Real-Time Small Object Detection in Optical Remote Sensing Images

Author(s):  
Wenxuan Han ◽  
Alifu Kuerban ◽  
Yuchun Yang ◽  
Zitong Huang ◽  
Binghui Liu ◽  
...  
2020 ◽  
Vol 12 (19) ◽  
pp. 3152
Author(s):  
Luc Courtrai ◽  
Minh-Tan Pham ◽  
Sébastien Lefèvre

This article tackles the problem of detecting small objects in satellite or aerial remote sensing images by relying on super-resolution to increase image spatial resolution, thus the size and details of objects to be detected. We show how to improve the super-resolution framework starting from the learning of a generative adversarial network (GAN) based on residual blocks and then its integration into a cycle model. Furthermore, by adding to the framework an auxiliary network tailored for object detection, we considerably improve the learning and the quality of our final super-resolution architecture, and more importantly increase the object detection performance. Besides the improvement dedicated to the network architecture, we also focus on the training of super-resolution on target objects, leading to an object-focused approach. Furthermore, the proposed strategies do not depend on the choice of a baseline super-resolution framework, hence could be adopted for current and future state-of-the-art models. Our experimental study on small vehicle detection in remote sensing data conducted on both aerial and satellite images (i.e., ISPRS Potsdam and xView datasets) confirms the effectiveness of the improved super-resolution methods to assist with the small object detection tasks.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1151 ◽  
Author(s):  
Xia Hua ◽  
Xinqing Wang ◽  
Ting Rui ◽  
Dong Wang ◽  
Faming Shao

Aiming at the real-time detection of multiple objects and micro-objects in large-scene remote sensing images, a cascaded convolutional neural network real-time object-detection framework for remote sensing images is proposed, which integrates visual perception and convolutional memory network reasoning. The detection framework is composed of two fully convolutional networks, namely, the strengthened object self-attention pre-screening fully convolutional network (SOSA-FCN) and the object accurate detection fully convolutional network (AD-FCN). SOSA-FCN introduces a self-attention module to extract attention feature maps and constructs a depth feature pyramid to optimize the attention feature maps by combining convolutional long-term and short-term memory networks. It guides the acquisition of potential sub-regions of the object in the scene, reduces the computational complexity, and enhances the network’s ability to extract multi-scale object features. It adapts to the complex background and small object characteristics of a large-scene remote sensing image. In AD-FCN, the object mask and object orientation estimation layer are designed to achieve fine positioning of candidate frames. The performance of the proposed algorithm is compared with that of other advanced methods on NWPU_VHR-10, DOTA, UCAS-AOD, and other open datasets. The experimental results show that the proposed algorithm significantly improves the efficiency of object detection while ensuring detection accuracy and has high adaptability. It has extensive engineering application prospects.


2019 ◽  
Vol 11 (3) ◽  
pp. 339 ◽  
Author(s):  
Chaoyue Chen ◽  
Weiguo Gong ◽  
Yongliang Chen ◽  
Weihong Li

Object detection has attracted increasing attention in the field of remote sensing image analysis. Complex backgrounds, vertical views, and variations in target kind and size in remote sensing images make object detection a challenging task. In this work, considering that the types of objects are often closely related to the scene in which they are located, we propose a convolutional neural network (CNN) by combining scene-contextual information for object detection. Specifically, we put forward the scene-contextual feature pyramid network (SCFPN), which aims to strengthen the relationship between the target and the scene and solve problems resulting from variations in target size. Additionally, to improve the capability of feature extraction, the network is constructed by repeating a building aggregated residual block. This block increases the receptive field, which can extract richer information for targets and achieve excellent performance with respect to small object detection. Moreover, to improve the proposed model performance, we use group normalization, which divides the channels into groups and computes the mean and variance for normalization within each group, to solve the limitation of the batch normalization. The proposed method is validated on a public and challenging dataset. The experimental results demonstrate that our proposed method outperforms other state-of-the-art object detection models.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 128339-128352 ◽  
Author(s):  
Jing Liu ◽  
Shuojin Yang ◽  
Liang Tian ◽  
Wei Guo ◽  
Bingyin Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document