The "Hardest" natural decidable theory

Author(s):  
S. Vorobyov
Keyword(s):  
2008 ◽  
Vol 73 (3) ◽  
pp. 885-905 ◽  
Author(s):  
Chris J. Conidis

AbstractIn 2004 Csima, Hirschfeldt, Knight, and Soare [1] showed that a set A ≤T 0′ is nonlow2 if and only if A is prime bounding, i.e., for every complete atomic decidable theory T, there is a prime model computable in A. The authors presented nine seemingly unrelated predicates of a set A, and showed that they are equivalent for sets. Some of these predicates, such as prime bounding, and others involving equivalence structures and abelian p-groups come from model theory, while others involving meeting dense sets in trees and escaping a given function come from pure computability theory.As predicates of A, the original nine properties are equivalent for sets; however, they are not equivalent in general. This article examines the (degree-theoretic) relationship between the nine properties. We show that the nine properties fall into three classes, each of which consists of several equivalent properties. We also investigate the relationship between the three classes, by determining whether or not any of the predicates in one class implies a predicate in another class.


1983 ◽  
Vol 48 (1) ◽  
pp. 21-32 ◽  
Author(s):  
H. A. Kierstead ◽  
J. B. Remmel

Ehrenfeucht and Mostowski [3] introduced the notion of indiscernibles and proved that every first order theory has a model with an infinite set of order indiscernibles. Since their work, techniques involving indiscernibles have proved to be extremely useful for constructing models with various specialized properties. In this paper and in a sequel [5], we investigate the effective content of Ehrenfeucht's and Mostowski's result. In this paper we consider the question of which decidable theories have decidable models with infinite recursive sets of indiscernibles. In §1, using some basic facts from stability theory, we show that certain large classes of decidable theories have decidable models with infinite recursive sets of indiscernibles. For example, we show that every ω-stable decidable theory and every stable theory which possesses a certain strong decidability property called ∃Q-decidability have such models. In §2 we construct several examples of decidable theories which have no decidable models with infinite recursive sets of indiscernibles. These examples show that our hypothesis for our positive results in §1 are necessary. Finally in §3 we give two applications of our results. First as an easy application of our results in §1, we show that every ω-stable decidable theory has uncountable models which realize only recursive types. Also our counterexamples in §2 allow us to answer negatively two questions of Baldwin and Kueker [1] concerning the effectiveness of their elimination of Ramsey quantifiers for certain theories.In [5], we show that in general the problem of finding an infinite set of indiscernibles in a decidable model is recursively equivalent to finding a path through a recursive infinite branching tree. Similarly, we show that the problem of finding an co-type of a set of indiscernibles in a decidable ω-categorical theory is recursively equivalent to finding a path through a highly recursive finitely branching tree.


1974 ◽  
Vol 39 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Leo Harrington

It is well known that a decidable theory possesses a recursively presentable model. If a decidable theory also possesses a prime model, it is natural to ask if the prime model has a recursive presentation. This has been answered affirmatively for algebraically closed fields [5], and for real closed fields, Hensel fields and other fields [3]. This paper gives a positive answer for the theory of differentially closed fields, and for any decidable ℵ1-categorical theory.The language of a theory T is denoted by L(T). All languages will be presumed countable. An x-type of T is a set of formulas with free variables x, which is consistent with T and which is maximal in this property. A formula with free variables x is complete if there is exactly one x-type containing it. A type is principal if it contains a complete formula. A countable model of T is prime if it realizes only principal types. Vaught has shown that a complete countable theory can have at most one prime model up to isomorphism.If T is a decidable theory, then the decision procedure for T equips L(T) with an effective counting. Thus the formulas of L(T) correspond to integers. The integer a formula φ(x) corresponds to is generally called the Gödel number of φ(x) and is denoted by ⌜φ(x)⌝. The usual recursion theoretic notions defined on the set of integers can be transferred to L(T). In particular a type Γ is recursive with index e if {⌜φ⌝.; φ ∈ Γ} is a recursive set of integers with index e.


1979 ◽  
Vol 44 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Manuel Lerman ◽  
James H. Schmerl

A structure is recursive if the set of quantifier-free sentences in the complete diagram ⊿() of is recursive. It has been known for some time that every decidable theory has a recursive model. In fact, every decidable theory has a decidable model (that is a model such that ⊿() is recursive). In this paper we find other conditions which imply that a theory have a recursive model.In §1 we study the relation between an ℵ0-categorical theory T having a recursive model and the complexity of the quantificational hierarchy of that theory. We let ∃0 denote the set of quantifier-free sentences, and let ∃n÷1 denote the set of sentences beginning with an existential quantifier and having n alternations of quantifiers. (∀n is defined analogously.) Then we show that if T is an arithmetical ℵ0-categorical theory such that T ⋂ ∃n÷2 is Σn÷10 for each n < ω, then T has a recursive model. We show that this is a best possible result by giving an example of a ⊿n÷20 ℵ0-categorical theory T such that T ⋂ ∃n÷1 is recursive yet T has no recursive model.In §2 we consider the theory of trees. Ershov [1] had proved that every Σ10 theory of trees has a recursive model. We show this to be best possible by giving an example of a ⊿20 theory of trees which has no recursive model.


1957 ◽  
Vol 22 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Hilary Putnam

There are a number of open problems involving the concepts of decidability and essential undecidability. This paper will present solutions to some of these problems. Specifically:(1) Can a decidable theory have an essentially undecidable, axiomatizable extension (with the same constants)?(2) Are all the complete extensions of an undecidable theory ever decidable?We shall show that the answer to both questions is in the affirmative. In answering question (1), the decidable theory for which an essentially undecidable axiomatizable extension will be constructed is the theory of the successor function and a single one-place predicate. It will also be shown that the decidability of this theory is a “best possible” result in the following direction: the theory of either of the common diadic arithmetic functions and a one-place predicate; i.e., of addition and a one-place predicate, or of multiplication and a one-place predicate, is undecidable.Before establishing the main result, it is convenient to give a simple proof that a decidable theory can have an axiomatizable (simply) undecidable extension. This is, of course, an immediate consequence of the main result; but the proof is simple and illustrates the methods that we are going to use in this paper.


1988 ◽  
Vol 53 (3) ◽  
pp. 729-735 ◽  
Author(s):  
Katarzyna Idziak ◽  
Pawel M. Idziak

AbstractThe aim of this paper is to characterize varieties of Heyting algebras with decidable theory of their finite members. Actually we prove that such varieties are exactly the varieties generated by linearly ordered algebras. It contrasts to the result of Burris [2] saying that in the case of whole varieties, only trivial variety and the variety of Boolean algebras have decidable first order theories.


1986 ◽  
Vol 51 (4) ◽  
pp. 1043-1055 ◽  
Author(s):  
Terry Millar

This paper contains an example of a decidable theory which has1) only a countable number of countable models (up to isomorphism);2) a decidable saturated model; and3) a countable homogeneous model that is not decidable.By the results in [1] and [2], this can happen if and only if the set of types realized by the homogeneous model (the type spectrum of the model) is not .If Γ and Σ are types of a theory T, define Γ ◁ Σ to mean that any model of T realizing Γ must realize Σ. In [3] a decidable theory is constructed that has only countably many countable models, only recursive types, but whose countable saturated model is not decidable. This is easy to do if the restriction on the number of countable models is lifted; the difficulty arises because the set of types must be recursively complex, and yet sufficiently related to control the number of countable models. In [3] the desired theory T is such thatis a linear order with order type ω*. Also, the set of complete types of T is not . The last feature ensures that the countable saturated model is not decidable; the first feature allows the number of countable models to be controlled.


1980 ◽  
Vol 45 (2) ◽  
pp. 359-362 ◽  
Author(s):  
Chris Ash ◽  
John Rosenthal

We consider the effect on decidability of adding, to the decidable theory of algebraically closed fields of characteristic zero, relation symbols for algebraic independence or function symbols for differentiation. Our results show that the corresponding theories are usually undeeidable.Let k and K be algebraically closed fields of characteristic zero. Let K be an extension of k of transcendence degree n over k. Since k has characteristic 0, we may assume that the rational field, Q, is a subfield of k.Let Indn be the n-ary relation on K which holds for exactly those n-tuples from K which are algebraically independent over k.Let x1, …, xn be a transcendence base for K over k. For i = 1, 2, …, n, let Di: K → K be the partial differentiation function with respect to xi and this base.Let KnInd = (K, +, ·, Indn), n ≤ 1 and let KnDiff = (K, +, ·, D1, …, Dn), n ≤ 1 where K has transcendence degree n over k.We show that the theories of these structures are independent of k when k has infinite transcendence degree over Q, that KnDiff has undeeidable theory for n ≤ 1 and that KnInd has undeeidable theory for n ≤ 2. The theory of K1Ind is decidable.


Sign in / Sign up

Export Citation Format

Share Document