scholarly journals Model-checking for successor-invariant first-order formulas on graph classes of bounded expansion

Author(s):  
Jan van den Heuvel ◽  
Stephan Kreutzer ◽  
Michal Pilipczuk ◽  
Daniel A. Quiroz ◽  
Roman Rabinovich ◽  
...  
2022 ◽  
Vol 69 (1) ◽  
pp. 1-46
Author(s):  
Édouard Bonnet ◽  
Eun Jung Kim ◽  
Stéphan Thomassé ◽  
Rémi Watrigant

Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA’14], we introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded rank-width graphs, map graphs, K t -free unit d -dimensional ball graphs, posets with antichains of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On all these classes (except map graphs without geometric embedding) we show how to compute in polynomial time a sequence of d -contractions , witness that the twin-width is at most d . We show that FO model checking, that is deciding if a given first-order formula ϕ evaluates to true for a given binary structure G on a domain D , is FPT in |ϕ| on classes of bounded twin-width, provided the witness is given. More precisely, being given a d -contraction sequence for G , our algorithm runs in time f ( d ,|ϕ |) · |D| where f is a computable but non-elementary function. We also prove that bounded twin-width is preserved under FO interpretations and transductions (allowing operations such as squaring or complementing a graph). This unifies and significantly extends the knowledge on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT algorithm on bounded-width posets by Gajarský et al. [FOCS’15].


Author(s):  
Francesco Belardinelli ◽  
Andreas Herzig

We introduce a first-order extension of dynamic logic (FO-DL), suitable to represent and reason about the behaviour of Data-aware Systems (DaS), which are systems whose data content is explicitly exhibited in the system’s description. We illustrate the expressivity of the formal framework by modelling English auctions as DaS, and by specifying relevant properties in FO-DL. Most importantly, we develop an abstraction-based verification procedure, thus proving that the model checking problem for DaS against FO-DL is actually decidable, provided some mild assumptions on the interpretationdomain.


Author(s):  
Jürgen Bohn ◽  
Werner Damm ◽  
Orna Grumberg ◽  
Hardi Hungar ◽  
Karen Laster
Keyword(s):  

Author(s):  
Diego Figueira ◽  
Santiago Figueira ◽  
Edwin Pin Baque

Finite ontology mediated query answering (FOMQA) is the variant of ontology mediated query answering (OMQA) where the represented world is assumed to be finite, and thus only finite models of the ontology are considered. We study the property of finite-controllability, that is, whether FOMQA and OMQA are equivalent, for fragments of C2RPQ. C2RPQ is the language of conjunctive two-way regular path queries, which can be regarded as the result of adding simple recursion to Conjunctive Queries. For graph classes S, we consider fragments C2RPQ(S) of C2RPQ as the queries whose underlying graph structure is in S. We completely classify the finitely controllable and non-finitely controllable fragments under: inclusion dependencies, (frontier-)guarded rules, frontier-one rules (either with or without constants), and more generally under guarded-negation first-order constraints. For the finitely controllable fragments, we show a reduction to the satisfiability problem for guarded-negation first-order logic, yielding a 2EXPTIME algorithm (in combined complexity) for the corresponding (F)OMQA problem.


Author(s):  
Bartosz Bednarczyk ◽  
Jakub Michaliszyn

AbstractLinear Temporal Logic (LTL) interpreted on finite traces is a robust specification framework popular in formal verification. However, despite the high interest in the logic in recent years, the topic of their quantitative extensions is not yet fully explored. The main goal of this work is to study the effect of adding weak forms of percentage constraints (e.g. that most of the positions in the past satisfy a given condition, or that $$\sigma $$ σ is the most-frequent letter occurring in the past) to fragments of LTL. Such extensions could potentially be used for the verification of influence networks or statistical reasoning. Unfortunately, as we prove in the paper, it turns out that percentage extensions of even tiny fragments of LTL have undecidable satisfiability and model-checking problems. Our undecidability proofs not only sharpen most of the undecidability results on logics with arithmetics interpreted on words known from the literature, but also are fairly simple. We also show that the undecidability can be avoided by restricting the allowed usage of the negation, and discuss how the undecidability results transfer to first-order logic on words.


Sign in / Sign up

Export Citation Format

Share Document