scholarly journals Path Spaces of Higher Inductive Types in Homotopy Type Theory

Author(s):  
Nicolai Kraus ◽  
Jakob von Raumer
Author(s):  
Michael Shulman

Homotopy type theory and univalent foundations (HoTT/UF) is a new foundation of mathematics, based not on set theory but on “infinity-groupoids”, which consist of collections of objects, ways in which two objects can be equal, ways in which those ways-to-be-equal can be equal, ad infinitum. Though apparently complicated, such structures are increasingly important in mathematics. Philosophically, they are an inevitable result of the notion that whenever we form a collection of things, we must simultaneously consider when two of those things are the same. The “synthetic” nature of HoTT/UF enables a much simpler description of infinity groupoids than is available in set theory, thereby aligning with modern mathematics while placing “equality” back in the foundations of logic. This chapter will introduce the basic ideas of HoTT/UF for a philosophical audience, including Voevodsky’s univalence axiom and higher inductive types.


2018 ◽  
Vol 83 (3) ◽  
pp. 1132-1146 ◽  
Author(s):  
HÅKON ROBBESTAD GYLTERUD

AbstractWe give a model of set theory based on multisets in homotopy type theory. The equality of the model is the identity type. The underlying type of iterative sets can be formulated in Martin-Löf type theory, without Higher Inductive Types (HITs), and is a sub-type of the underlying type of Aczel’s 1978 model of set theory in type theory. The Voevodsky Univalence Axiom and mere set quotients (a mild kind of HITs) are used to prove the axioms of constructive set theory for the model. We give an equivalence to the model provided in Chapter 10 of “Homotopy Type Theory” by the Univalent Foundations Program.


Author(s):  
CARLO ANGIULI ◽  
EDWARD MOREHOUSE ◽  
DANIEL R. LICATA ◽  
ROBERT HARPER

AbstractHomotopy type theory is an extension of Martin-Löf type theory, based on a correspondence with homotopy theory and higher category theory. In homotopy type theory, the propositional equality type is proof-relevant, and corresponds to paths in a space. This allows for a new class of datatypes, called higher inductive types, which are specified by constructors not only for points but also for paths. In this paper, we consider a programming application of higher inductive types. Version control systems such as Darcs are based on the notion of patches—syntactic representations of edits to a repository. We show how patch theory can be developed in homotopy type theory. Our formulation separates formal theories of patches from their interpretation as edits to repositories. A patch theory is presented as a higher inductive type. Models of a patch theory are given by maps out of that type, which, being functors, automatically preserve the structure of patches. Several standard tools of homotopy theory come into play, demonstrating the use of these methods in a practical programming context.


Author(s):  
Cesare Gallozzi

Abstract We introduce a family of (k, h)-interpretations for 2 ≤ k ≤ ∞ and 1 ≤ h ≤ ∞ of constructive set theory into type theory, in which sets and formulas are interpreted as types of homotopy level k and h, respectively. Depending on the values of the parameters k and h, we are able to interpret different theories, like Aczel’s CZF and Myhill’s CST. We also define a proposition-as-hproposition interpretation in the context of logic-enriched type theories. The rest of the paper is devoted to characterising and analysing the interpretations considered. The formulas valid in the prop-as-hprop interpretation are characterised in terms of the axiom of unique choice. We also analyse the interpretations of CST into homotopy type theory, providing a comparative analysis with Aczel’s interpretation. This is done by formulating in a logic-enriched type theory the key principles used in the proofs of the two interpretations. Finally, we characterise a class of sentences valid in the (k, ∞)-interpretations in terms of the ΠΣ axiom of choice.


Author(s):  
David Corfield

In the Anglophone world, the philosophical treatment of geometry has fallen on hard times. This chapter argues that philosophy can come to a better understanding of mathematics by providing an account of modern geometry, including its development of new forms of space, both for mathematical physics and for arithmetic. It returns to the discussions of Weyl and Cassirer on geometry whose concerns are very much relevant today. A way of encompassing a great part of modern geometry via homotopy toposes is discussed, along with the `cohesive’ variant of their internal language, known as `homotopy type theory’. With these tools in place, we can now start to see what an adequate philosophical account of current geometry might look like.


Sign in / Sign up

Export Citation Format

Share Document