Poling Process of Composite Piezoelectric Sensors for Structural Health Monitoring: A Pilot Comparative Study

2018 ◽  
Vol 2 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Hamidreza Hoshyarmanesh ◽  
Yaser Maddahi
2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
M. Sun ◽  
W. J. Staszewski ◽  
R. N. Swamy

Structural Health Monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced composites, possess very important capabilities of monitoring various physical or chemical parameters related to the health and therefore, durable service life of structures. In particular, piezoelectric sensors and magnetorestrictive sensors can serve as both sensors and actuators, which make SHM to be an active monitoring system. Thus, smart sensing technologies are now currently available, and can be utilized to the SHM of civil engineering structures. In this paper, the application of smart materials/sensors for the SHM of civil engineering structures is critically reviewed. The major focus is on the evaluations of laboratory and field studies of smart materials/sensors in civil engineering structures.


2006 ◽  
Vol 83 (1) ◽  
pp. 139-148 ◽  
Author(s):  
W. D. NOTHWANG ◽  
S. G. HIRSCH ◽  
J. D. DEMAREE ◽  
C. W. HUBBARD ◽  
M. W. COLE ◽  
...  

2012 ◽  
Vol 249-250 ◽  
pp. 849-855 ◽  
Author(s):  
Andrea Alaimo ◽  
Alberto Milazzo ◽  
Calogero Orlando

Structural Health Monitoring (SHM) for composite materials is becoming a primary task due to their extended use in safety critical applications. Different methods, based on the use of piezoelectric transducers as well as of fiber optics, has been successfully proposed to detect and monitor damage in composite structural components with particular attention focused on delamination cracks.In the present paper a Structural Health Monitoring model, based on the use of piezoelectric sensors, already proposed by the authors for isotropic damaged components, is extended to delaminated composite structures. The dynamic behavior of the host damaged structure and the bonded piezoelectric sensors is modeled by means of a boundary element approach based on the Dual Reciprocity BEM. The sensitivity of the piezoelectric sensors has been studied by varying the delamination length characterizing the skin/stiffener debonding phenomenon of composite structures undergoing dynamic loads.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Massimo Olivero ◽  
Guido Perrone ◽  
Alberto Vallan ◽  
Daniele Tosi

A comparative study is presented between Bragg grating (FBG) and polarimetric sensors (PS), two of the most promising fiber optic sensing techniques for the structural health monitoring of smart materials based on carbon fiber composites. The paper describes the realization of a test plate equipped with both types of sensors and reports the characterization under static and dynamic conditions, highlighting pros and cons of both technologies. The FBG setup achieves 1.15 ± 0.0016 pm/kg static load response and reproduces dynamic excitation with 0.1% frequency uncertainty; the PS system exhibits a sensitivity of 1.74 ± 0.001 mV/kg and reproduces dynamic excitation with 0.5% frequency uncertainty. It is shown that the PS technology is a good and cheap alternative to FBG for vibration-monitoring of small structures at high frequency.


Sign in / Sign up

Export Citation Format

Share Document