scholarly journals Ergodic Capacity of High Throughput Satellite Systems With Mixed FSO-RF Transmission

Author(s):  
Huaicong Kong ◽  
Min Lin ◽  
Zining Wang ◽  
Jian Ouyang ◽  
Julian Cheng
Author(s):  
Puneeth Jubba Honnaiah ◽  
Eva Lagunas ◽  
Danilo Spano ◽  
Nicola Maturo ◽  
Symeon Chatzinotas

2020 ◽  
Author(s):  
Emna Zedini ◽  
Abla Kammoun ◽  
Mohamed-Slim Alouini

Due to recent advances in laser satellite communications technology, free-space optical (FSO) links are presented as an ideal alternative to the conventional radio frequency (RF) feeder links of the geostationary satellite for next generation very high throughput satellite (VHTS) systems. In this paper, we investigate the performance of multibeam VHTS systems that account for nonlinear high power amplifiers at the transparent fixed gain satellite transponder. Specifically, we consider the forward link of such systems, where the RF user link is assumed to follow the shadowed Rician model and the FSO feeder link is modeled by the Gamma-Gamma distribution in the presence of beam wander and pointing errors where it operates under either the intensity modulation with direct detection or the heterodyne detection. Moreover, zero-forcing precoder is employed to mitigate the effect of inter-beam interference caused by the aggressive frequency reuse in the user link. The performance of the system under study is evaluated in terms of the outage probability, the average bit-error rate (BER), and the ergodic capacity that are derived in exact closed-forms in terms of the bivariate Meijer's G function. Simple asymptotic results for the outage probability and the average BER are also obtained at high signal-to-noise ratio.


2021 ◽  
pp. 1-8
Author(s):  
Anargyros J. Roumeliotis ◽  
Christos N. Efrem ◽  
Charilaos I. Kourogiorgas ◽  
Athanasios D. Panagopoulos

2020 ◽  
pp. 1-12
Author(s):  
Ishtiaq Ahmad ◽  
Khoa D. Nguyen ◽  
Nick Letzepis ◽  
Gottfried Lechner

Sign in / Sign up

Export Citation Format

Share Document