Optimal Generation Method of NC Milling Tool Path for Pocket with Island

Author(s):  
Wu Fuzhong
Keyword(s):  
Author(s):  
Adam Jacso ◽  
Tibor Szalay ◽  
Juan Carlos Jauregui ◽  
Juvenal Rodriguez Resendiz

Many applications are available for the syntactic and semantic verification of NC milling tool paths in simulation environments. However, these solutions – similar to the conventional tool path generation methods – are generally based on geometric considerations, and for that reason they cannot address varying cutting conditions. This paper introduces a new application of a simulation algorithm that is capable of producing all the necessary geometric information about the machining process in question for the purpose of further technological analysis. For performing such an analysis, an image space-based NC simulation algorithm is recommended, since in the case of complex tool paths it is impossible to provide an analytical description of the process of material removal. The information obtained from the simulation can be used not only for simple analyses, but also for optimisation purposes with a view to increasing machining efficiency.


2014 ◽  
Vol 635-637 ◽  
pp. 560-563
Author(s):  
Chun Xia Tian

In NC milling tool path reflects all the processing process, the tool path is reasonable or not, related to the workpiece processing quality and production efficiency, through several parts of the typical contour shape analysis, determination method of NC machining tool path, determined by the combination of NC milling tool path, to reduce the surface roughness of the workpiece, improve workpiece processing quality objective.


2011 ◽  
Vol 223 ◽  
pp. 691-700 ◽  
Author(s):  
Xavier Beudaert ◽  
Pierre Yves Pechard ◽  
Christophe Tournier

In the context of 5-axis flank milling, the machining of non-developable ruled surfaces may lead to complex tool paths to minimize undercut and overcut. The curvature characteristics of these tool paths generate slowdowns affecting the machining time and the quality of the machined surface. The tool path has to be as smooth as possible while respecting the maximum allowed tolerance. In this paper, an iterative approach is proposed to smooth an initial tool path. An indicator of the maximum feedrate is computed using the kinematical constraints of the considered machine tool, especially the maximum velocity, acceleration and jerk. Then, joint coordinates of the tool path are locally smoothed in order to raise the effective feedrate in the area of interest. Machining simulation based on a N-buffer algorithm is used to control undercut and overcut. This method has been tested in flank milling of an impeller and can be applied in 3 to 5-axis machining.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 125
Author(s):  
Zsolt János Viharos ◽  
László Móricz ◽  
Máté István Büki

The 21st century manufacturing technology is unimagined without the various CAM (Computer Aided Manufacturing) toolpath generation programs. The aims of developing the toolpath strategies which are offered by the cutting control software is to ensure the longest possible tool lifetime and high efficiency of the cutting method. In this paper, the goal is to compare the efficiency of the 3 types of tool path strategies in the very special field of micro-milling of ceramic materials. The dimensional distortion of the manufactured geometries served to draw the Taylor curve for describing the wearing progress of the cutting tool helping to determine the worn-in, normal and wear out stages. These isolations allow to separate the connected high-frequency vibration measurements as well. Applying the novel feature selection technique of the authors, the basis for the vibration based micro-milling tool condition monitoring for ceramics cutting is presented for different toolpath strategies. It resulted in the identification of the most relevant vibration signal features and the presentation of the identified and automatically separated tool wearing stages as well.


2011 ◽  
Vol 48-49 ◽  
pp. 541-546 ◽  
Author(s):  
Dian Zhu Sun ◽  
Xin Cai Kang ◽  
Yan Rui Li ◽  
Yong Wei Sun

To achieve the accurate and efficient NC milling simulation based on the discrete triangular mesh model, we proposed an algorithm for geometric modeling and intersection. We construct the R*-tree index for upper-surface nodes of mesh model, based on which the nodes within cutting region can be obtained. We compute tool path segments within cutting projection region of node, and calculate the minimum adjustment height of node according to tool path segments within cutting projection region and then change the z-value of node. Thus, we complete the intersection calculation in simulation process. It has been proved by examples that the algorithm for geometric modeling and intersection in NC milling simulation has strong adaptation to tool path segment type and that it can accurately and efficiently reflect the effect of NC simulation process based on the discrete triangular mesh model of rough.


Sign in / Sign up

Export Citation Format

Share Document