High-Performance Chipless Radio-Frequency Identification Tags: Using a slow-wave Approach for miniaturized structure

2019 ◽  
Vol 61 (4) ◽  
pp. 46-54
Author(s):  
Maha Added ◽  
Noureddine Boulejfen ◽  
Milan Svanda ◽  
Fadhel M. Ghannouchi ◽  
Tan-Phu Vuong
2018 ◽  
Vol 89 (4) ◽  
pp. 560-571 ◽  
Author(s):  
Xiaochen Chen ◽  
Leena Ukkonen ◽  
Johanna Virkki

Passive radio frequency identification-based technology is a convincing approach to the achievement of versatile energy- and cost-efficient wireless platforms for future wearable applications. By using two-part antenna structures, the antenna-electronics interconnections can remain non-stressed, which can significantly improve the reliability of the textile-embedded wireless components. In this article, we describe fabrication of two-part stretchable and non-stretchable passive ultra-high frequency radio frequency identification textile tags using electro-textile and embroidered antennas, and test their reliability when immersed as well as under cyclic strain. The results are compared to tags with traditional one-part dipole antennas fabricated from electro-textiles and by embroidery. Based on the results achieved, the initial read ranges of the two-part antenna tags, around 5 m, were only slightly shorter than those of the one-part antenna tags. In addition, the tag with two-part antennas can maintain high performance in a moist environment and during continuous stretching, unlike the one-part antenna tag where the antenna-integrated circuit attachment is under stress.


In Vivo ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 233-238 ◽  
Author(s):  
UMAR WAZIR ◽  
SALIM TAYEH ◽  
NICHOLAS PERRY ◽  
MICHAEL MICHELL ◽  
ANMOL MALHOTRA ◽  
...  

2019 ◽  
Vol 18 (12) ◽  
pp. 2642-2646
Author(s):  
Weikang Chen ◽  
Zhenyi Niu ◽  
Mengyuan Li ◽  
Zhuo Li ◽  
Qian Xu ◽  
...  

Author(s):  
Alex K. Jones ◽  
Swapna Dontharaju ◽  
Shenchih Tung ◽  
Peter J. Hawrylak ◽  
Leonid Mats ◽  
...  

2016 ◽  
Vol 29 (2) ◽  
pp. 236-247 ◽  
Author(s):  
Kaori Kusuda ◽  
Kazuhiko Yamashita ◽  
Akiko Ohnishi ◽  
Kiyohito Tanaka ◽  
Masaru Komino ◽  
...  

Purpose – To prevent malpractices, medical staff has adopted inventory time-outs and/or checklists. Accurate inventory and maintenance of surgical instruments decreases the risk of operating room miscounting and malfunction. In our previous study, an individual management of surgical instruments was accomplished using Radio Frequency Identification (RFID) tags. The purpose of this paper is to evaluate a new management method of RFID-tagged instruments. Design/methodology/approach – The management system of RFID-tagged surgical instruments was used for 27 months in clinical areas. In total, 13 study participants assembled surgical trays in the central sterile supply department. Findings – While using the management system, trays were assembled 94 times. During this period, no assembly errors occurred. An instrument malfunction had occurred after the 19th, 56th, and 73th uses, no malfunction caused by the RFID tags, and usage history had been recorded. Additionally, the time it took to assemble surgical trays was recorded, and the long-term usability of the management system was evaluated. Originality/value – The system could record the number of uses and the defective history of each surgical instrument. In addition, the history of the frequency of instruments being transferred from one tray to another was recorded. The results suggest that our system can be used to manage instruments safely. Additionally, the management system was acquired of the learning effect and the usability on daily maintenance. This finding suggests that the management system examined here ensures surgical instrument and tray assembly quality.


2010 ◽  
Vol 99 (5) ◽  
pp. 680-687
Author(s):  
Kazuyuki Mori ◽  
Zhaowu Meng ◽  
Hirosumi Kikuchi ◽  
Yasuhide Kataoka ◽  
Kazuhisa Nakazato ◽  
...  

2019 ◽  
Vol 144 (2) ◽  
pp. 189-195
Author(s):  
Andrew P. Norgan ◽  
Kurt E. Simon ◽  
Barbara A. Feehan ◽  
Lynn L. Saari ◽  
Joseph M. Doppler ◽  
...  

Context.— Preanalytic errors, including specimen labeling errors and specimen loss, occur frequently during specimen collection, transit, and accessioning. Radio-frequency identification tags can decrease specimen identification and tracking errors through continuous and automated tracking of specimens. Objective.— To implement a specimen tracking infrastructure to reduce preanalytic errors (specimen mislabeling or loss) between specimen collection and laboratory accessioning. Specific goals were to decrease preanalytic errors by at least 70% and to simultaneously decrease employee effort dedicated to resolving preanalytic errors or investigating lost specimens. Design.— A radio-frequency identification specimen-tracking system was developed. Major features included integral radio-frequency identification labels (radio-frequency identification tags and traditional bar codes in a single printed label) printed by point-of-care printers in collection suites; dispersed radio-frequency identification readers at major transit points; and systems integration of the electronic health record, laboratory information system, and radio-frequency identification tracking system to allow for computerized physician order entry driven label generation, specimen transit time tracking, interval-based alarms, and automated accessioning. Results.— In the 6-month postimplementation period, 6 mislabeling events occurred in collection areas using the radio-frequency identification system, compared with 24 events in the 6-month preimplementation period (75% decrease; P = .001). In addition, the system led to the timely recovery of 3 lost specimens. Labeling expenses were decreased substantially in the transition from high-frequency to ultrahigh frequency radio-frequency identification tags. Conclusions.— Radio-frequency identification specimen tracking prevented several potential specimen-loss events, decreased specimen recovery time, and decreased specimen labeling errors. Increases in labeling/tracking expenses for the system were more than offset by time savings and loss avoidance through error mitigation.


Sign in / Sign up

Export Citation Format

Share Document