6G: The Personal Tactile Internet - And Open Questions for Information Theory

Author(s):  
Gerhard Paul Fettweis ◽  
Holger Boche
2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Jean-Pierre Magnot

We describe a mathematical link between aspects of information theory, called pairwise comparisons, and discretized gauge theories. The link is made by the notion of holonomy along the edges of a simplex. This correspondence leads to open questions in both fields.


2015 ◽  
Vol 15 (13&14) ◽  
pp. 1165-1184
Author(s):  
Maria A. Jivulescu ◽  
Nicolae Lupa ◽  
Ion Nechita

We consider random bipartite quantum states obtained by tracing out one subsystem from a random, uniformly distributed, tripartite pure quantum state. We compute thresholds for the dimension of the system being traced out, so that the resulting bipartite quantum state satisfies the reduction criterion in different asymptotic regimes. We consider as well the basis-independent version of the reduction criterion (the absolute reduction criterion), computing thresholds for the corresponding eigenvalue sets. We do the same for other sets relevant in the study of absolute separability, using techniques from random matrix theory. Finally, we gather and compare the known values for the thresholds corresponding to different entanglement criteria, and conclude with a list of open questions.


Author(s):  
Karoline Wiesner ◽  
James Ladyman

Abstract `Complex systems are information processors' is a statement that is frequently made. Here we argue for the distinction between information processing -- in the sense of encoding and transmitting a symbolic representation -- and the formation of correlations (pattern formation / self-organisation). The study of both uses tools from information theory, but the purpose is very different in each case: explaining the mechanisms and understanding the purpose or function in the first case, versus data analysis and correlation extraction in the latter. We give examples of both and discuss some open questions. The distinction helps focus research efforts on the relevant questions in each case.


Author(s):  
James Kunert-Graf ◽  
Nikita Sakhanenko ◽  
David Galas

Information theory provides robust measures of multivariable interdependence, but classically does little to characterize the multivariable relationships it detects. The Partial Information Decomposition (PID) characterizes the mutual information between variables by decomposing it into unique, redundant, and synergistic components. This has been usefully applied, particularly in neuroscience, but there is currently no generally accepted method for its computation. Independently, the Information Delta framework characterizes non-pairwise dependencies in genetic datasets. This framework has developed an intuitive geometric interpretation for how discrete functions encode information, but lacks some important generalizations. This paper shows that the PID and Delta frameworks are largely equivalent. We equate their key expressions, allowing for results in one framework to apply towards open questions in the other. For example, we find that the approach of Bertschinger et al. is useful for the open Information Delta question of how to deal with linkage disequilibrium. We also show how PID solutions can be mapped onto the space of delta measures. Using Bertschinger et al. as an example solution, we identify a specific plane in delta-space on which this approach’s optimization is constrained, and compute it for all possible three-variable discrete functions of a three-letter alphabet. This yields a clear geometric picture of how a given solution decomposes information


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1333
Author(s):  
James Kunert-Graf ◽  
Nikita Sakhanenko ◽  
David Galas

Information theory provides robust measures of multivariable interdependence, but classically does little to characterize the multivariable relationships it detects. The Partial Information Decomposition (PID) characterizes the mutual information between variables by decomposing it into unique, redundant, and synergistic components. This has been usefully applied, particularly in neuroscience, but there is currently no generally accepted method for its computation. Independently, the Information Delta framework characterizes non-pairwise dependencies in genetic datasets. This framework has developed an intuitive geometric interpretation for how discrete functions encode information, but lacks some important generalizations. This paper shows that the PID and Delta frameworks are largely equivalent. We equate their key expressions, allowing for results in one framework to apply towards open questions in the other. For example, we find that the approach of Bertschinger et al. is useful for the open Information Delta question of how to deal with linkage disequilibrium. We also show how PID solutions can be mapped onto the space of delta measures. Using Bertschinger et al. as an example solution, we identify a specific plane in delta-space on which this approach’s optimization is constrained, and compute it for all possible three-variable discrete functions of a three-letter alphabet. This yields a clear geometric picture of how a given solution decomposes information.


Author(s):  
Peter Vorderer

This paper points to new developments in the context of entertainment theory. Starting from a background of well-established theories that have been proposed and elaborated mainly by Zillmann and his collaborators since the 1980s, a new two-factor model of entertainment is introduced. This model encompasses “enjoyment” and “appreciation” as two independent factors. In addition, several open questions regarding cultural differences in humans’ responses to entertainment products or the usefulness of various theoretical concepts like “presence,” “identification,” or “transportation” are also discussed. Finally, the question of why media users are seeking entertainment is brought to the forefront, and a possibly relevant need such as the “search for meaningfulness” is mentioned as a possible major candidate for such an explanation.


Author(s):  
Charles A. Doan ◽  
Ronaldo Vigo

Abstract. Several empirical investigations have explored whether observers prefer to sort sets of multidimensional stimuli into groups by employing one-dimensional or family-resemblance strategies. Although one-dimensional sorting strategies have been the prevalent finding for these unsupervised classification paradigms, several researchers have provided evidence that the choice of strategy may depend on the particular demands of the task. To account for this disparity, we propose that observers extract relational patterns from stimulus sets that facilitate the development of optimal classification strategies for relegating category membership. We conducted a novel constrained categorization experiment to empirically test this hypothesis by instructing participants to either add or remove objects from presented categorical stimuli. We employed generalized representational information theory (GRIT; Vigo, 2011b , 2013a , 2014 ) and its associated formal models to predict and explain how human beings chose to modify these categorical stimuli. Additionally, we compared model performance to predictions made by a leading prototypicality measure in the literature.


Sign in / Sign up

Export Citation Format

Share Document