scholarly journals Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units

2010 ◽  
Vol 12 (4) ◽  
pp. 40-51 ◽  
Author(s):  
Mark Watson ◽  
Roberto Olivares-Amaya ◽  
Richard G. Edgar ◽  
Alan Aspuru-Guzik
2021 ◽  
Author(s):  
Ariel Gale ◽  
Eugen Hruska ◽  
Fang Liu

Pressure plays essential roles in chemistry by altering structures and controlling chemical reactions. The extreme-pressure polarizable continuum model (XP-PCM) is an emerging method with an efficient quantum mechanical description of small and medium-size molecules at high pressure (on the order of GPa). However, its application to large molecular systems was previously hampered by CPU computation bottleneck: the Pauli repulsion potential unique to XP-PCM requires the evaluation of a large number of electric field integrals, resulting in significant computational overhead compared to the gas-phase or standard-pressure polarizable continuum model calculations. Here, we exploit advances in Graphical Processing Units (GPUs) to accelerate the XP-PCM integral evaluations. This enables high-pressure quantum chemistry simulation of proteins that used to be computationally intractable. We benchmarked the performance using 18 small proteins in aqueous solutions. Using a single GPU, our method evaluates the XP-PCM free energy of a protein with over 500 atoms and 4000 basis functions within half an hour. The time taken by the XP-PCM-integral evaluation is typically 1\% of the time taken for a gas-phase density functional theory (DFT) on the same system. The overall XP-PCM calculations require less computational effort than that for their gas-phase counterpart due to the improved convergence of self-consistent field iterations. Therefore, the description of the high-pressure effects with our GPU accelerated XP-PCM is feasible for any molecule tractable for gas-phase DFT calculation. We have also validated the accuracy of our method on small molecules whose properties under high pressure are known from experiments or previous theoretical studies.


Sign in / Sign up

Export Citation Format

Share Document