quantum chemistry calculations
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 107)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
René Bes ◽  
Gregory Leinders ◽  
Kristina Kvashnina

The uranium valence electronic structure in the prototypical undistorted perovskite KUO3 is reported on the basis of a comprehensive experimental study using multi-edge HERFD-XAS and relativistic quantum chemistry calculations based on density functional theory. Very good agreement is obtained between theory and experiments, including the confirmation of previously reported Laporte forbidden f–f transitions and X-ray photoelectron spectroscopic measurements. Many spectral features are clearly identified in the probed U-f, U-p and U-d states and the contribution of the O-p states in those features could be assessed. The octahedral crystal field strength, 10Dq, was found to be 6.6 (1.5) eV and 6.9 (4) eV from experiment and calculations, respectively. Calculated electron binding energies down to U-4f states are also reported.


Author(s):  
Rocío Sánchez-de-Armas ◽  
Carmen J. Calzado

A common feature of spin-crossover molecules deposited on a substrate is the presence of a residual proportion of high-spin (HS) molecules at low temperature, instead of the pure low-spin (LS)...


2021 ◽  
Vol 22 (24) ◽  
pp. 13645
Author(s):  
Gregory D. Sinenko ◽  
Dilara A. Farkhutdinova ◽  
Ivan N. Myasnyanko ◽  
Nadezhda S. Baleeva ◽  
Mikhail S. Baranov ◽  
...  

Bioimaging techniques require development of a wide variety of fluorescent probes that absorb and emit red light. One way to shift absorption and emission of a chromophore to longer wavelengths is to modify its chemical structure by adding polycyclic aromatic hydrocarbon (PAH) fragments, thus increasing the conjugation length of a molecule while maintaining its rigidity. Here, we consider four novel classes of conformationally locked Green Fluorescent Protein (GFP) chromophore derivatives obtained by extending their aromatic systems in different directions. Using high-level ab initio quantum chemistry calculations, we show that the alteration of their electronic structure upon annulation may unexpectedly result in a drastic change of their fluorescent properties. A flip of optically bright and dark electronic states is most prominent in the symmetric fluorene-based derivative. The presence of a completely dark lowest-lying excited state is supported by the experimentally measured extremely low fluorescence quantum yield of the newly synthesized compound. Importantly, one of the asymmetric modes of annulation provides a very promising strategy for developing red-shifted molecular emitters with an absorption wavelength of ∼600 nm, having no significant impact on the character of the bright S-S1 transition.


2021 ◽  
Author(s):  
Nikolay A. Bogdanov ◽  
Giovanni Li Manni ◽  
Sandeep Sharma ◽  
Olle Gunnarsson ◽  
Ali Alavi

AbstractCuprates with corner-sharing CuO4 plaquettes have received much attention owing to the discoveries of high-temperature superconductivity and exotic states where spin and charge or spin and orbital degrees of freedom are separated. In these systems spins are strongly coupled antiferromagnetically via superexchange mechanisms, with high nearest-neighbour coupling varying among different compounds. The electronic properties of cuprates are also known to be highly sensitive to the presence, distance and displacement of apical oxygens perpendicular to the CuO2 planes. Here we present ab initio quantum chemistry calculations of the nearest-neighbour superexchange antiferromagnetic (AF) coupling J of two cuprates, Sr2CuO3 and La2CuO4. The former lacks apical oxygens, whilst the latter contain two apical oxygens per CuO2 unit completing a distorted octahedral environment around each Cu atom. Good agreement is obtained with experimental estimates for both systems. Analysis of the correlated wavefunctions together with extended superexchange models shows that there is an important synergetic effect of the Coulomb interaction and the O–Cu hopping, namely a correlated breathing-enhanced hopping mechanism. This is a new ingredient in superexchange models. Suppression of this mechanism leads to drastic reduction in the AF coupling, indicating that it is of primary importance in generating the strong interactions. We also find that J increases substantially as the distance between Cu and apical O is increased.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hui-Yun Huang ◽  
Jia-Hua Huang ◽  
Yong-Heng Wang ◽  
Dan Hu ◽  
Yong-Jun Lu ◽  
...  

The cytochrome P450 enzymes (P450s or CYPs) are heme-containing enzymes which catalyze a wide range of oxidation reactions in nature. In our previous study, a rare multifunctional P450 AstB was found, which can dually oxidize two methyl groups (C-19 and C-21) of preasperterpenoid A to asperterpenoid A with 3-carboxyl and 11-hydroxymethyl groups. However, the oxidation order of C-19 and C-21 catalyzed by AstB is unclear. In order to reveal this oxidation order, probable pathways catalyzed by AstB were proposed, and the oxidation order of C-19 and C-21 was obtained by quantum chemistry calculations. The potential intermediates (three new asperterpenoids D–F, 1–3) were obtained through the chemical investigation on the extract of the transformant strain and chemical conversions, which were used as the standards to detect their existences in the extract of the transformant strain with HPLC-MS. Combined with the quantum chemistry calculation and the HPLC-MS analysis, the catalyzed order of AstB in asperterpenoid A biosynthesis was revealed. Furthermore, the mPTPB inhibition of obtained asperterpenoids was evaluated, and the results showed that 3-carboxyl and the oxidation station of C-21 would be the key factors for mPTPB inhibition of asperterpenoids.


2021 ◽  
Vol 22 (24) ◽  
pp. 13436
Author(s):  
Evangelos Balanikas ◽  
Lara Martinez-Fernandez ◽  
Gérard Baldacchino ◽  
Dimitra Markovitsi

The study deals with four-stranded DNA structures (G-Quadruplexes), known to undergo ionization upon direct absorption of low-energy UV photons. Combining quantum chemistry calculations and time-resolved absorption spectroscopy with 266 nm excitation, it focuses on the electron holes generated in tetramolecular systems with adenine groups at the ends. Our computations show that the electron hole is placed in a single guanine site, whose location depends on the position of the adenines at the 3′ or 5′ ends. This position also affects significantly the electronic absorption spectrum of (G+)● radical cations. Their decay is highly anisotropic, composed of a fast process (<2 µs), followed by a slower one occurring in ~20 µs. On the one hand, they undergo deprotonation to (G-H2)● radicals and, on the other, they give rise to a reaction product absorbing in the 300–500 nm spectral domain.


eFood ◽  
2021 ◽  
Author(s):  
Jiaxi Liang ◽  
Ruier Zhang ◽  
Jiaxin Zhao ◽  
Huifan Liu

Peptide Arg-Ser-Ser (RSS) was derived from Lactobacillus amylolyticus co-incubated with edible <i>Dendrobium aphyllum</i>. Here, we further examined the antioxidative effects of RSS in HepG2 cells subjected to 2,2-azobis(2-methylpropanimidamidine) dihydrochloride-induced oxidative stress. RSS protected cells by eliminating the level of reactive oxygen species (ROS). The protein expression of antioxidant enzymes, Nrf2 and Keap1 determined by western blot, indicated that RSS might maintain cellular homeostasis by directly scavenging free radicals instead of by enzymatic system. Furthermore, quantum chemistry calculations and a characterization of electronic-related properties showed that the highest occupied molecular orbital energy distribution was on arginine residue. Pre-treatment with RSS with the active site methylated resulted in increased ROS levels, thereby verifying that N<sub>2</sub>-H<sub>3</sub> is the active site for antioxidant activity. Our findings provide valuable insights into the antioxidant activity of RSS and a basis for developing antioxidant functional foods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Guerra ◽  
Sarvesh Kumar ◽  
Fernando Aguilar-Galindo ◽  
Sergio Díaz-Tendero ◽  
Ana I. Lozano ◽  
...  

AbstractSuperoxide anions colliding with benzene molecules at impact energies from 200 to 900 eV are reported for the first time to form massive complexes. With the aid of quantum chemistry calculations, we propose a mechanism in which a sudden double ionization of benzene and the subsequent electrostatic attraction between the dication and the anion form a stable covalently bonded C6H6O2+ molecule, that evolves towards the formation of benzene-diol conformers. These findings lend support to a model presenting a new high energy anion-driven chemistry as an alternative way to form complex molecules.


Sign in / Sign up

Export Citation Format

Share Document