Optimization of Blood Microfluidic Co-Flow Devices for Dual Measurement

Author(s):  
Amit Nayak ◽  
Curtis Armstrong ◽  
Catherine Mavriplis ◽  
Marianne Fenech
2018 ◽  
Vol 6 (3) ◽  
Author(s):  
He Huang ◽  
Hendrik du Toit ◽  
Luca Panariello ◽  
Luca Mazzei ◽  
Asterios Gavriilidis

Abstract Gold nanomaterials have diverse applications ranging from healthcare and nanomedicine to analytical sciences and catalysis. Microfluidic and millifluidic reactors offer multiple advantages for their synthesis and manufacturing, including controlled or fast mixing, accurate reaction time control and excellent heat transfer. These advantages are demonstrated by reviewing gold nanoparticle synthesis strategies in flow devices. However, there are still challenges to be resolved, such as reactor fouling, particularly if robust manufacturing processes are to be developed to achieve the desired targets in terms of nanoparticle size, size distribution, surface properties, process throughput and robustness. Solutions to these challenges are more effective through a coordinated approach from chemists, engineers and physicists, which has at its core a qualitative and quantitative understanding of the synthesis processes and reactor operation. This is important as nanoparticle synthesis is complex, encompassing multiple phenomena interacting with each other, often taking place at short timescales. The proposed methodology for the development of reactors and processes is generic and contains various interconnected considerations. It aims to be a starting point towards rigorous design procedures for the robust and reproducible continuous flow synthesis of gold nanoparticles. Graphical Abstract:


1976 ◽  
Vol 98 (3) ◽  
pp. 447-452
Author(s):  
P. North

The performance of many fluid flow devices is limited by the separation of the turbulent boundary layer. This separation may be suppressed or delayed by use of wall jets, raising questions of jet location and strength. A numerical analysis of a single wall jet gave results in close agreement with experiment. The same analysis of a single wall jet gave results in close agreement with experiment. The same calculation procedure indicated that two sequential wall jets, with the same total kinetic energy flux as the single jet, would suppress separation under conditions where the single jet would not. The best two-jet arrangement would be achieved with 63 percent of the total kinetic energy flux in the first jet. It is possible that three-jet arrangements could provide some further improvement.


2001 ◽  
Vol 69 (5) ◽  
pp. 546-553 ◽  
Author(s):  
J. A. Whitehead ◽  
W. Gregory Lawson ◽  
John Salzig

Sign in / Sign up

Export Citation Format

Share Document