Multimodal Wearable Sensing for Fine-Grained Activity Recognition in Healthcare

2015 ◽  
Vol 19 (5) ◽  
pp. 26-35 ◽  
Author(s):  
Debraj De ◽  
Pratool Bharti ◽  
Sajal K. Das ◽  
Sriram Chellappan
2018 ◽  
pp. 277-296
Author(s):  
Chun Zhu ◽  
Weihua Sheng

In this chapter, the authors propose an approach to indoor human daily activity recognition that combines motion data and location information. One inertial sensor is worn on the thigh of a human subject to provide motion data while a motion capture system is used to record the human location information. Such a combination has the advantage of significantly reducing the obtrusiveness to the human subject at a moderate cost of vision processing, while maintaining a high accuracy of recognition. The approach has two phases. First, a two-step algorithm is proposed to recognize the activity based on motion data only. In the coarse-grained classification, two neural networks are used to classify the basic activities. In the fine-grained classification, the sequence of activities is modeled by a Hidden Markov Model (HMM) to consider the sequential constraints. The modified short-time Viterbi algorithm is used for real-time daily activity recognition. Second, to fuse the motion data with the location information, Bayes' theorem is used to refine the activities recognized from the motion data. The authors conduct experiments in a mock apartment, and the obtained results prove the effectiveness and accuracy of the algorithms.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 164453-164470
Author(s):  
Muhammad Muaaz ◽  
Ali Chelli ◽  
Ahmed Abdelmonem Abdelgawwad ◽  
Andreu Catala Mallofre ◽  
Matthias Patzold

Author(s):  
Chun Zhu ◽  
Weihua Sheng

In this chapter, the authors propose an approach to indoor human daily activity recognition that combines motion data and location information. One inertial sensor is worn on the thigh of a human subject to provide motion data while a motion capture system is used to record the human location information. Such a combination has the advantage of significantly reducing the obtrusiveness to the human subject at a moderate cost of vision processing, while maintaining a high accuracy of recognition. The approach has two phases. First, a two-step algorithm is proposed to recognize the activity based on motion data only. In the coarse-grained classification, two neural networks are used to classify the basic activities. In the fine-grained classification, the sequence of activities is modeled by a Hidden Markov Model (HMM) to consider the sequential constraints. The modified short-time Viterbi algorithm is used for real-time daily activity recognition. Second, to fuse the motion data with the location information, Bayes’ theorem is used to refine the activities recognized from the motion data. The authors conduct experiments in a mock apartment, and the obtained results prove the effectiveness and accuracy of the algorithms.


2019 ◽  
Vol 11 (21) ◽  
pp. 2584 ◽  
Author(s):  
Yuan He ◽  
Xinyu Li ◽  
Xiaojun Jing

Short-range radar has become one of the latest sensor technologies for the Internet of Things (IoT), and it plays an increasingly vital role in IoT applications. As the essential task for various smart-sensing applications, radar-based human activity recognition and person identification have received more attention due to radar’s robustness to the environment and low power consumption. Activity recognition and person identification are generally treated as separate problems. However, designing different networks for these two tasks brings a high computational complexity and wastes of resources to some extent. Furthermore, there are some correlations in activity recognition and person identification tasks. In this work, we propose a multiscale residual attention network (MRA-Net) for joint activity recognition and person identification with radar micro-Doppler signatures. A fine-grained loss weight learning (FLWL) mechanism is presented for elaborating a multitask loss to optimize MRA-Net. In addition, we construct a new radar micro-Doppler dataset with dual labels of activity and identity. With the proposed model trained on this dataset, we demonstrate that our method achieves the state-of-the-art performance in both radar-based activity recognition and person identification tasks. The impact of the FLWL mechanism was further investigated, and ablation studies of the efficacy of each component in MRA-Net were also conducted.


Sign in / Sign up

Export Citation Format

Share Document