Toward Data Augmentation and Interpretation in Sensor-Based Fine-Grained Hand Activity Recognition

Author(s):  
Jinqi Luo ◽  
Xiang Li ◽  
Rabih Younes
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 845
Author(s):  
Dongheun Han ◽  
Chulwoo Lee ◽  
Hyeongyeop Kang

The neural-network-based human activity recognition (HAR) technique is being increasingly used for activity recognition in virtual reality (VR) users. The major issue of a such technique is the collection large-scale training datasets which are key for deriving a robust recognition model. However, collecting large-scale data is a costly and time-consuming process. Furthermore, increasing the number of activities to be classified will require a much larger number of training datasets. Since training the model with a sparse dataset can only provide limited features to recognition models, it can cause problems such as overfitting and suboptimal results. In this paper, we present a data augmentation technique named gravity control-based augmentation (GCDA) to alleviate the sparse data problem by generating new training data based on the existing data. The benefits of the symmetrical structure of the data are that it increased the number of data while preserving the properties of the data. The core concept of GCDA is two-fold: (1) decomposing the acceleration data obtained from the inertial measurement unit (IMU) into zero-gravity acceleration and gravitational acceleration, and augmenting them separately, and (2) exploiting gravity as a directional feature and controlling it to augment training datasets. Through the comparative evaluations, we validated that the application of GCDA to training datasets showed a larger improvement in classification accuracy (96.39%) compared to the typical data augmentation methods (92.29%) applied and those that did not apply the augmentation method (85.21%).


Author(s):  
Peilian Zhao ◽  
Cunli Mao ◽  
Zhengtao Yu

Aspect-Based Sentiment Analysis (ABSA), a fine-grained task of opinion mining, which aims to extract sentiment of specific target from text, is an important task in many real-world applications, especially in the legal field. Therefore, in this paper, we study the problem of limitation of labeled training data required and ignorance of in-domain knowledge representation for End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) in legal field. We proposed a new method under deep learning framework, named Semi-ETEKGs, which applied E2E framework using knowledge graph (KG) embedding in legal field after data augmentation (DA). Specifically, we pre-trained the BERT embedding and in-domain KG embedding for unlabeled data and labeled data with case elements after DA, and then we put two embeddings into the E2E framework to classify the polarity of target-entity. Finally, we built a case-related dataset based on a popular benchmark for ABSA to prove the efficiency of Semi-ETEKGs, and experiments on case-related dataset from microblog comments show that our proposed model outperforms the other compared methods significantly.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254054
Author(s):  
Gaihua Wang ◽  
Lei Cheng ◽  
Jinheng Lin ◽  
Yingying Dai ◽  
Tianlun Zhang

The large intra-class variance and small inter-class variance are the key factor affecting fine-grained image classification. Recently, some algorithms have been more accurate and efficient. However, these methods ignore the multi-scale information of the network, resulting in insufficient ability to capture subtle changes. To solve this problem, a weakly supervised fine-grained classification network based on multi-scale pyramid is proposed in this paper. It uses pyramid convolution kernel to replace ordinary convolution kernel in residual network, which can expand the receptive field of the convolution kernel and use complementary information of different scales. Meanwhile, the weakly supervised data augmentation network (WS-DAN) is used to prevent over fitting and improve the performance of the model. In addition, a new attention module, which includes spatial attention and channel attention, is introduced to pay more attention to the object part in the image. The comprehensive experiments are carried out on three public benchmarks. It shows that the proposed method can extract subtle feature and achieve classification effectively.


2015 ◽  
Vol 19 (5) ◽  
pp. 26-35 ◽  
Author(s):  
Debraj De ◽  
Pratool Bharti ◽  
Sajal K. Das ◽  
Sriram Chellappan

2018 ◽  
pp. 277-296
Author(s):  
Chun Zhu ◽  
Weihua Sheng

In this chapter, the authors propose an approach to indoor human daily activity recognition that combines motion data and location information. One inertial sensor is worn on the thigh of a human subject to provide motion data while a motion capture system is used to record the human location information. Such a combination has the advantage of significantly reducing the obtrusiveness to the human subject at a moderate cost of vision processing, while maintaining a high accuracy of recognition. The approach has two phases. First, a two-step algorithm is proposed to recognize the activity based on motion data only. In the coarse-grained classification, two neural networks are used to classify the basic activities. In the fine-grained classification, the sequence of activities is modeled by a Hidden Markov Model (HMM) to consider the sequential constraints. The modified short-time Viterbi algorithm is used for real-time daily activity recognition. Second, to fuse the motion data with the location information, Bayes' theorem is used to refine the activities recognized from the motion data. The authors conduct experiments in a mock apartment, and the obtained results prove the effectiveness and accuracy of the algorithms.


Sign in / Sign up

Export Citation Format

Share Document