Control and monitoring system prototype for pulse plasma sintering process

Author(s):  
Rafal Kotas ◽  
Pawel Marciniak ◽  
Bartosz Sakowicz ◽  
Dariusz Makowski ◽  
Michal Czarnecki ◽  
...  
2006 ◽  
Vol 114 ◽  
pp. 239-244 ◽  
Author(s):  
Andrzej Michalski ◽  
Marcin Rosiński ◽  
D. Siemiaszko ◽  
Jakub Jaroszewicz ◽  
Krzysztof Jan Kurzydlowski

Nanocrystalline copper powders, produced by the reduction of the CuO with hydrogen, were consolidated using the pulse plasma sintering (PPS) method. The sintering process was carried out at temperatures between 500 and 900 oC under a load of 60 MPa for 5 min. The average crystallite size of the sintered component obtained at 500 oC was about 80nm and at 900 oC 1880 nm. The components produced at 500 oC had a relative density of 90 %, and those sintered at 900 oC 92 %; their hardness was 215 and 140 HV0.1, respectively.


2011 ◽  
Vol 484 ◽  
pp. 130-134 ◽  
Author(s):  
Marcin Rosiński ◽  
Andrzej Michalski ◽  
Magdalena Płocińska ◽  
Jerzy Szawłowski

Tungsten carbide (WC) and WCCo powders added with 30 vol.% cubic boron nitride (cBN) and 5 and 12 wt% of Ti were sintered by the pulse plasma sintering (PPS) technique. The sintering process was conducted under a load of 75 MPa at a pressure of 5.10- 5 mbar and a temperature of 1100-1500°C for 5min. The phase composition, density, hardness and microstructure of the sintered material thus obtained were examined. In the cBN-WCTi5wt% composite with an addition of 6wt% Co, the cBN particles are well bound with the matrix. The transcrystalline fractures of the cBN particles also indicate that the binding forces between these particles and the WCCoTi matrix exceed the matrix cohesion. The interfaces between the cBN grains and the surrounding matrix are almost straight lines, and no reactions between the cBN grains and the matrix were revealed in SEM observations.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3398
Author(s):  
Katarzyna Konopka ◽  
Marek Krasnowski ◽  
Justyna Zygmuntowicz ◽  
Konrad Cymerman ◽  
Marcin Wachowski ◽  
...  

The paper describes an investigation of Al2O3 samples and NiAl–Al2O3 composites consolidated by pulse plasma sintering (PPS). In the experiment, several methods were used to determine the properties and microstructure of the raw Al2O3 powder, NiAl–Al2O3 powder after mechanical alloying, and samples obtained via the PPS. The microstructural investigation of the alumina and composite properties involves scanning electron microscopy (SEM) analysis and X-ray diffraction (XRD). The relative densities were investigated with helium pycnometer and Archimedes method measurements. Microhardness analysis with fracture toughness (KIC) measures was applied to estimate the mechanical properties of the investigated materials. Using the PPS technique allows the production of bulk Al2O3 samples and intermetallic ceramic composites from the NiAl–Al2O3 system. To produce by PPS method the NiAl–Al2O3 bulk materials initially, the composite powder NiAl–Al2O3 was obtained by mechanical alloying. As initial powders, Ni, Al, and Al2O3 were used. After the PPS process, the final composite materials consist of two phases: Al2O3 located within the NiAl matrix. The intermetallic ceramic composites have relative densities: for composites with 10 wt.% Al2O3 97.9% and samples containing 20 wt.% Al2O3 close to 100%. The hardness of both composites is equal to 5.8 GPa. Moreover, after PPS consolidation, NiAl–Al2O3 composites were characterized by high plasticity. The presented results are promising for the subsequent study of consolidation composite NiAl–Al2O3 powder with various initial contributions of ceramics (Al2O3) and a mixture of intermetallic–ceramic composite powders with the addition of ceramics to fabricate composites with complex microstructures and properties. In composites with complex microstructures that belong to the new class of composites, in particular, the synergistic effect of various mechanisms of improving the fracture toughness will be operated.


2007 ◽  
Vol 82 (15-24) ◽  
pp. 2621-2626 ◽  
Author(s):  
M. Rosinski ◽  
E. Fortuna ◽  
A. Michalski ◽  
Z. Pakiela ◽  
K.J. Kurzydlowski

2015 ◽  
Vol 45 (3) ◽  
pp. 1369-1376 ◽  
Author(s):  
M.J. Kruszewski ◽  
R. Zybała ◽  
Ł. Ciupiński ◽  
M. Chmielewski ◽  
B. Adamczyk-Cieślak ◽  
...  

2011 ◽  
Vol 86 (9-11) ◽  
pp. 2573-2576 ◽  
Author(s):  
Marcin Rosiński ◽  
Mirosław J. Kruszewski ◽  
Andrzej Michalski ◽  
Elżbieta Fortuna-Zaleśna ◽  
Łukasz Ciupiński ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document