intermetallic precipitates
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 58 (12) ◽  
pp. 763-780
Author(s):  
P. Zhuang ◽  
H. Shi ◽  
Z. Zhang ◽  
R. Chai ◽  
J. Zan ◽  
...  

Abstract In this work, a solution heat treatment of Al-Si-Mg-Cu casting alloy was analyzed. A new short solution heat treatment (SHT) with only 60 min has been allowed. The results revealed that this short SHT enables the improvement of the dendritic structure and the spheroidization of the eutectic silicon particles. Furthermore, the alloy showed improved mechanical properties when compared to the same alloy subjected to a longer SHT of 4 h. It was observed that increasing the SHT temperature can accelerate the dissolution and homogenization of the silicon particles and intermetallic precipitates in the matrix.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1428
Author(s):  
Chao Zhang ◽  
Wudong Si ◽  
Yin Wang ◽  
Sichao Dai ◽  
Da Shu

Ni-Mo and Ni-Mo-W coatings were electrodeposited on a stainless steel sheet, and then were annealed at 200, 400, and 600 °C. The effect of annealing heat treatment on the microstructure of Ni-Mo and Ni-Mo-W electrodepositions, their nano-hardness, and tribological properties were investigated. It was revealed that the average crystalline are refined and phase separation are promoted with formation of Mo-W related intermetallic precipitates at temperature exceed 400 °C on account of the co-existence of Mo-W elements within Ni-Mo-W coatings. Annealing heat treatment leads to hardening, and the hardness and elastic module increase significantly. The grain boundary (GB) relaxation and hard precipitated intermetallic particles are responsible for the annealing-induced hardening for ≤400 °C annealed and 600 °C annealed Ni-Mo-W coatings, respectively. In addition, both adhesive wear and abrasive wear are observed for coatings, and abrasive wear becomes predominant when annealing temperature up to 600 °C. The wear resistance of coatings is improved eventually by formation of a mixture of lubricated oxides upon annealing at 600 °C and the enhancement of H/E ratio for ≤400 °C annealed Ni-Mo-W coatings.


Author(s):  
Haijie Zhang ◽  
Menghuai Wu ◽  
Christian M. G. Rodrigues ◽  
Andreas Ludwig ◽  
Abdellah Kharicha

Abstract A forced flow was experimentally shown to influence the solidification microstructure of metal alloys by modifying the coarsening/ripening law. In some technical alloys (AlSi7Fe1), this flow effect can also be significantly suppressed due to the formation of intermetallic precipitates (β-Al5FeSi) that can block the flow in the mushy region. The forced flow was induced by a rotating magnetic field (RMF). Herein, a three-phase volume-average-based solidification model is introduced to reproduce the above experiment. The three phases are the melt, the primary solid phase of columnar dendrites, and the second solid phase of intermetallic precipitates. The dynamic precipitation of the intermetallic phase is modelled, and its blocking effect on the flow is considered by a modified permeability. Dendrite coarsening, which influences the permeability, is also considered. The RMF induces a strong azimuthal flow and a relatively weak meridional flow (Ekman effect) at the front of the mushy zone during unidirectional solidification. This forced flow reduces the mushy zone thickness, induces the central segregation channel, affects the distribution of the intermetallic precipitates, and influences dendrite coarsening, which in turn modifies the interdendritic flow. Both interdendritic flow and the microstructure formation are strongly coupled. The modelling results support the explanation of Steinbach and Ratke—the formed intermetallic precipitates (β-Al5FeSi) can block the interdendritic flow, and hence influence the coarsening law. The distribution of β-Al5FeSi is dominantly influenced by the flow-induced macrosegregation. The simulation results of the Si and Fe distribution across the sample section are compared with the experimental results, showing good simulation–experiment agreement. Graphic Abstract During alloy solidifications the flow can influence the mushy zone by inducing macrosegregation, modifying the solidification microstructure, and influencing the formation of intermetallic precipitates. The resulting microstructural features can in turn affect the melt flow by changing the flow intensity and flow pattern. A three-phase volume-average-based solidification model is introduced to study the flow-solidification interaction, and hence to improve the knowledge on the formation mechanism of intermetallics and their effect on solidification. (a) Schematic for the flow pattern and formation of different phases; (b) experiment–simulation comparison of macrosegregation (Fe) across the diameter of as-solidified sample.


2020 ◽  
Vol 174 ◽  
pp. 108796
Author(s):  
Jian Li ◽  
Guangming Cao ◽  
Hao Wang ◽  
Weina Zhang ◽  
Chenggang Li ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Klimenkov ◽  
P. Vladimirov ◽  
U. Jäntsch ◽  
V. Kuksenko ◽  
R. Rolli ◽  
...  

Abstract The microstructural response of beryllium after neutron irradiation at various temperatures (643–923 K) was systematically studied using analytical transmission electron microscope that together with outcomes from advanced atomistic modelling provides new insights in the mechanisms of microstructural changes in this material. The most prominent feature of microstructural modification is the formation of gas bubbles, which is revealed at all studied irradiation temperatures. Except for the lowest irradiation temperature, gas bubbles have the shape of thin hexagonal prisms with average height and diameter increasing with temperature. A high number density of small bubbles is observed within grains, while significantly larger bubbles are formed along high-angle grain boundaries (GB). Denuded zones (DZ) nearly free from bubbles are found along both high- and low-angle grain boundaries. Precipitations of secondary phases (mainly intermetallic Al-Fe-Be) were observed inside grains, along dislocation lines and at GBs. EDX analysis has revealed homogeneous segregation of chromium and iron along GBs. The observed features are discussed with respect to the available atomistic modelling results. In particular, we present a plausible reasoning for the abundant formation of gas bubbles on intermetallic precipitates, observation of various thickness of zones denuded in gas bubbles and precipitates, and their relation to the atomic scale diffusion mechanisms of solute-vacancy clusters.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1930 ◽  
Author(s):  
Marcin Wachowski ◽  
Robert Kosturek ◽  
Lucjan Śnieżek ◽  
Sebastian Mróz ◽  
Andrzej Stefanik ◽  
...  

The paper describes an investigation of an explosively welded Mg/Al/Ti multilayer composite. Following the welding, the composite was subjected to hot-rolling in three different temperatures: 300 °C, 350 °C and 400 °C, with a total relative strain of 30%. The rolling speed was 0.2 m/s. The investigation of the composite properties involves microhardness analysis and mini-specimen tensile tests of the joints. The composite Mg/Al and Al/Ti bonds in the as-welded state and after rolling in 400 °C were subjected to microstructure analysis using scanning electron (SEM) and transmission electron microscopy (TEM). In the Al/Ti interface, the presence of melted zones with localized intermetallic precipitates has been reported in the as-welded state, and it has been stated that hot-rolling results in precipitation of intermetallic particles from the melted zone. The application of the hot-rolling process causes the formation of a continuous layer in the Mg/Al joint, consisting of two intermetallic phases, Mg2Al3 (β) and Mg17Al12 (γ).


Data in Brief ◽  
2018 ◽  
Vol 17 ◽  
pp. 863-869
Author(s):  
Alexander J. Knowles ◽  
Tea-Sung Jun ◽  
Ayan Bhowmik ◽  
Nicholas G. Jones ◽  
T. Ben Britton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document