scholarly journals Andror2: A Dataset of Manually-Reproduced Bug Reports for Android apps

Author(s):  
Tyler Wendland ◽  
Jingyang Sun ◽  
Junayed Mahmud ◽  
S. M. Hasan Mansur ◽  
Steven Huang ◽  
...  
Keyword(s):  
Author(s):  
Tao Zhang ◽  
Wenjun Hu ◽  
Xiapu Luo ◽  
Xiaobo Ma

Recently, there has been consistent growth in Android applications (apps). Under these circumstances, software maintenance for Android apps becomes an essential and important task. The core of software maintenance is to locate bugs in source files. Previous bug localization approaches mainly focus on open-source desktop software (e.g. Eclipse, Mozilla, GCC). Even though a few studies locate the bugs in the Android apps, they are dedicated to a special app named ZXing, without developing a general method to locate the bugs in Android apps by taking into account the unique characteristics of Android apps’ bug reports. Such characteristics include fewer number of historical bug reports, insufficient detailed description, etc. These characteristics hinder existing localization approaches from being directly delivered to Android apps, because lack of enough information degrades the performance of those localization approaches relying on historical bug reports. Commit messages include more informative data which can provide the details of reported bugs. Therefore, in this paper, we propose a novel information retrieval-based approach which utilizes commit messages to locate new bugs in Android apps. This approach not only considers the structured textual similarity between the given bug and the candidate source files, but also computes the unstructured textual similarities between the new bug and the commit messages linked to the corresponding source files. According to the experimental results on 10 popular open-source Android apps managed by GitHub, our approach outperforms the state-of-the-art bug localization methods that include BugLocator, BLUiR, and two-phase model.


2020 ◽  
Author(s):  
Alex Akinbi ◽  
Ehizojie Ojie

BACKGROUND Technology using digital contact tracing apps has the potential to slow the spread of COVID-19 outbreaks by recording proximity events between individuals and alerting people who have been exposed. However, there are concerns about the abuse of user privacy rights as such apps can be repurposed to collect private user data by service providers and governments who like to gather their citizens’ private data. OBJECTIVE The objective of our study was to conduct a preliminary analysis of 34 COVID-19 trackers Android apps used in 29 individual countries to track COVID-19 symptoms, cases, and provide public health information. METHODS We identified each app’s AndroidManifest.xml resource file and examined the dangerous permissions requested by each app. RESULTS The results in this study show 70.5% of the apps request access to user location data, 47% request access to phone activities including the phone number, cellular network information, and the status of any ongoing calls. 44% of the apps request access to read from external memory storage and 2.9% request permission to download files without notification. 17.6% of the apps initiate a phone call without giving the user option to confirm the call. CONCLUSIONS The contributions of this study include a description of these dangerous permissions requested by each app and its effects on user privacy. We discuss principles that must be adopted in the development of future tracking and contact tracing apps to preserve the privacy of users and show transparency which in turn will encourage user participation.


Author(s):  
Henrique Neves da Silva ◽  
Andre Takeshi Endo ◽  
Marcelo Medeiros Eler ◽  
Silvia Regina Vergilio ◽  
Vinicius H. S. Durelli

2019 ◽  
Vol 14 (2) ◽  
pp. 1-29 ◽  
Author(s):  
Oliviero Riganelli ◽  
Daniela Micucci ◽  
Leonardo Mariani

Sign in / Sign up

Export Citation Format

Share Document