Privacy preserving data access scheme for IoT devices

Author(s):  
Mosarrat Jahan ◽  
Suranga Seneviratne ◽  
Ben Chu ◽  
Aruna Seneviratne ◽  
Sanjay Jha
2022 ◽  
pp. 102610
Author(s):  
Abubakar Sadiq Sani ◽  
Elisa Bertino ◽  
Dong Yuan ◽  
Ke Meng ◽  
Zhao Yang Dong

Author(s):  
Taeho Jung ◽  
Xiang-Yang Li ◽  
Zhiguo Wan ◽  
Meng Wan

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


2011 ◽  
Vol 8 (3) ◽  
pp. 801-819 ◽  
Author(s):  
Huang Ruwei ◽  
Gui Xiaolin ◽  
Yu Si ◽  
Zhuang Wei

In order to implement privacy-preserving, efficient and secure data storage and access environment of cloud storage, the following problems must be considered: data index structure, generation and management of keys, data retrieval, treatments of change of users? access right and dynamic operations on data, and interactions among participants. To solve those problems, the interactive protocol among participants is introduced, an extirpation-based key derivation algorithm (EKDA) is designed to manage the keys, a double hashed and weighted Bloom Filter (DWBF) is proposed to retrieve the encrypted keywords, which are combined with lazy revocation, multi-tree structure, asymmetric and symmetric encryptions, which form a privacypreserving, efficient and secure framework for cloud storage. The experiment and security analysis show that EKDA can reduce the communication and storage overheads efficiently, DWBF supports ciphertext retrieval and can reduce communication, storage and computation overhead as well, and the proposed framework is privacy preserving while supporting data access efficiently.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 945 ◽  
Author(s):  
Rafael Torres Moreno ◽  
Jorge Bernal Bernabe ◽  
Jesús García Rodríguez ◽  
Tore Kasper Frederiksen ◽  
Michael Stausholm ◽  
...  

Privacy enhancing technologies (PETs) allow to achieve user’s transactions unlinkability across different online Service Providers. However, current PETs fail to guarantee unlinkability against the Identity Provider (IdP), which becomes a single point of failure in terms of privacy and security, and therefore, might impersonate its users. To address this issue, OLYMPUS EU project establishes an interoperable framework of technologies for a distributed privacy-preserving identity management based on cryptographic techniques that can be applied both to online and offline scenarios. Namely, distributed cryptographic techniques based on threshold cryptography are used to split up the role of the Identity Provider (IdP) into several authorities so that a single entity is not able to impersonate or track its users. The architecture leverages PET technologies, such as distributed threshold-based signatures and privacy attribute-based credentials (p-ABC), so that the signed tokens and the ABC credentials are managed in a distributed way by several IdPs. This paper describes the Olympus architecture, including its associated requirements, the main building blocks and processes, as well as the associated use cases. In addition, the paper shows how the Olympus oblivious architecture can be used to achieve privacy-preserving M2M offline transactions between IoT devices.


2014 ◽  
Vol 13 (8) ◽  
pp. 4260-4272 ◽  
Author(s):  
Giwon Lee ◽  
Insun Jang ◽  
Sangheon Pack ◽  
Xuemin Shen

Author(s):  
Yang Zhao ◽  
Jun Zhao ◽  
Linshan Jiang ◽  
Rui Tan ◽  
Dusit Niyato ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2109
Author(s):  
Liming Fang ◽  
Minghui Li ◽  
Lu Zhou ◽  
Hanyi Zhang ◽  
Chunpeng Ge

A smart watch is a kind of emerging wearable device in the Internet of Things. The security and privacy problems are the main obstacles that hinder the wide deployment of smart watches. Existing security mechanisms do not achieve a balance between the privacy-preserving and data access control. In this paper, we propose a fine-grained privacy-preserving access control architecture for smart watches (FPAS). In FPAS, we leverage the identity-based authentication scheme to protect the devices from malicious connection and policy-based access control for data privacy preservation. The core policy of FPAS is two-fold: (1) utilizing a homomorphic and re-encrypted scheme to ensure that the ciphertext information can be correctly calculated; (2) dividing the data requester by different attributes to avoid unauthorized access. We present a concrete scheme based on the above prototype and analyze the security of the FPAS. The performance and evaluation demonstrate that the FPAS scheme is efficient, practical, and extensible.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 87169-87177
Author(s):  
Xiaoshuai Zhang ◽  
Chao Liu ◽  
Stefan Poslad ◽  
Kok Keong Chai

Sign in / Sign up

Export Citation Format

Share Document