scholarly journals Device-Based Security to Improve User Privacy in the Internet of Things †

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.

Author(s):  
Saravanan K ◽  
P. Srinivasan

Cloud IoT has evolved from the convergence of Cloud computing with Internet of Things (IoT). The networked devices in the IoT world grow exponentially in the distributed computing paradigm and thus require the power of the Cloud to access and share computing and storage for these devices. Cloud offers scalable on-demand services to the IoT devices for effective communication and knowledge sharing. It alleviates the computational load of IoT, which makes the devices smarter. This chapter explores the different IoT services offered by the Cloud as well as application domains that are benefited by the Cloud IoT. The challenges on offloading the IoT computation into the Cloud are also discussed.


Subject IoT ecosystem. Significance The market for the Internet of Things (IoT) or connected devices is expanding rapidly, with no manufacturer currently forecast to dominate the supply chain. This has fragmented the emerging IoT ecosystem, triggering questions about interoperability and cybersecurity of IoT devices. Impacts Firms in manufacturing, transportation and logistics and utilities are expected to see the highest IoT spending in coming years. The pace of IoT adoption is inextricably linked to that of related technologies such as 5G, artificial intelligence and cloud computing. Data privacy and security will be the greatest constraint to IoT adoption.


Internet-of-Things (IoT) has been considered as a fundamental part of our day by day existence with billions of IoT devices gathering information remotely and can interoperate within the current Internet framework. Fog computing is nothing but cloud computing to the extreme of network security. It provides computation and storage services via CSP (Cloud Service Provider) to end devices in the Internet of Things (IoT). Fog computing allows the data storing and processing any nearby network devices or nearby cloud endpoint continuum. Using fog computing, the designer can reduce the computation architecture of the IoT devices. Unfortunitily, this new paradigm IoT-Fog faces numerous new privacy and security issues, like authentication and authorization, secure communication, information confidentiality. Despite the fact that the customary cloud-based platform can even utilize heavyweight cryptosystem to upgrade security, it can't be performed on fog devices drectly due to reseource constraints. Additionally, a huge number of smart fog devices are fiercely disseminated and situated in various zones, which expands the danger of being undermined by some pernicious gatherings. Trait Based Encryption (ABE) is an open key encryption conspire that enables clients to scramble and unscramble messages dependent on client qualities, which ensures information classification and hearty information get to control. Be that as it may, its computational expense for encryption and unscrambling stage is straightforwardly corresponding to the multifaceted nature of the arrangements utilized. The points is to assess the planning, CPU burden, and memory burden, and system estimations all through each phase of the cloud-to-things continuum amid an analysis for deciding highlights from a finger tapping exercise for Parkinson's Disease patients. It will be appeared there are confinements to the proposed testbeds when endeavoring to deal with upwards of 35 customers at the same time. These discoveries lead us to a proper conveyance of handling the leaves the Intel NUC as the most suitable fog gadget. While the Intel Edison and Raspberry Pi locate a superior balance at in the edge layer, crossing over correspondence conventions and keeping up a self-mending network topology for "thing" devices in the individual territory organize.


IJOSTHE ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 12
Author(s):  
Aayushi Priya ◽  
Rajeev Tiwari

Cloud computing is an enormous area which shares huge amount of data over cloud services and it has been increasing with its on-demand technology. Since, with these versatile cloud services, when the delicate data stored within the cloud storage servers, there are some difficulties which has to be managed like its Security Issues, Data Privacy, Data Confidentiality, Data Sharing and its integrity over the cloud servers dynamically. Also, the authenticity and data access control should be maintained in this wide environment. Thus, Attribute based Encryption (ABE) is a significant version of cryptographic technique in the cloud computing environment. Public Key Encryption acts as the basic technique for ABE where it provides one to many encryptions, here, the private key of users & the cipher-text both rely on attributes such that, when the set of the attributes of users key matches set of attributes of cipher-text with its corresponding access policy, only then decryption is possible. Thus, an opponent could grant access to the sensitive information that holds multiple keys, if it has at least one individual key for accession. The techniques based on ABE consist of two types: KP-ABE (Key- Policy ABE) where the user’s private key is linked to an access structure (or access policy) over attributes and cipher-text is connected to the set of attributes, and CP-ABE (cipher-text policy ABE) is vice versa. Hence, in this, Review we discuss about the various security techniques and relations based on Attributes Based Encryption, especially, the type KP-ABE over data attributes which explains secured methods & its schemes related to time specifications.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3594-3600 ◽  

Big data analytics, cloud computing & internet of things are a smart triad which have started shaping our future towards smart home, city, business, country. Internet of things is a convergence of intelligent networks, electronic devices, and cloud computing. The source of big data at different connected electronic devices is stored on cloud server for analytics. Cloud provides the readymade infrastructure, remote processing power to consumers of internet of things. Cloud computing also gives device manufacturers and service providers access to ―advanced analytics and monitoring‖, ―communication between services and devices‖, ―user privacy and security‖. This paper, presents an overview of internet of things, role of cloud computing & big data analytics towards IoT. In this paper IoT enabled automatic irrigation system is proposed that saves data over ―ThingSpeak‖ database an IoT analytics platform through ESP8266 wifi module. This paper also summarizes the application areas and discusses the challenges of IoT.


Author(s):  
Mohammed Banu Ali

Universities worldwide are starting to turn to cloud computing. The quality characteristics, which include access to a wider network of computing resources, pay-as-you-go services, self-services, agile services, and resource centralisation provide a convincing argument for HEIs to adopt cloud services. However, the risks leading to non-adoption range from security issues to a lack of cloud vendor support. The findings suggest that security, privacy, and trust are the key determinants to non-adoption as stakeholders felt that the cloud cannot fully guarantee the safeguarding of sensitive information. Key determinants to cloud adoption include improving relationships between students and teachers via collaborative tools and proposing cloud apps for mobile devices for accessing virtual learning materials and email securely off-campus. In conclusion, university stakeholders are still unconvinced about adopting cloud services, but future advances of the cloud may help to steer their decision to adopt this innovative technology given its overwhelming potential.


Author(s):  
Mamata Rath ◽  
Bibudhendu Pati

Adoption of Internet of Things (IoT) and Cloud of Things (CoT) in the current developing technology era are expected to be more and more invasive, making them important mechanism of the future Internet-based communication systems. Cloud of Things and Internet of Things (IoT) are two emerging as well as diversified advanced domains that are diversified in current technological scenario. Paradigm where Cloud and IoT are merged together is foreseen as disruptive and as an enabler of a large number of application scenarios. Due to the adoption of the Cloud and IoT paradigm a number of applications are gaining important technical attention. In the future, it is going to be more complicated a setup to handle security in technology. Information till now will severely get changed and it will be very tough to keep up with varying technology. Organisations will have to repeatedly switch over to new skill-based technology with respect to higher expenditure. Latest tools, methods and enough expertise are highly essential to control threats and vulnerability to computing systems. Keeping in view the integration of Cloud computing and IoT in the new domain of Cloud of things, the said article provides an up-to-date eminence of Cloud-based IoT applications and Cloud of Things with a focus on their security and application-oriented challenges. These challenges are then synthesized in detail to present a technical survey on various issues related to IoT security, concerns, adopted mechanisms and their positive security assurance using Cloud of Things.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 945 ◽  
Author(s):  
Rafael Torres Moreno ◽  
Jorge Bernal Bernabe ◽  
Jesús García Rodríguez ◽  
Tore Kasper Frederiksen ◽  
Michael Stausholm ◽  
...  

Privacy enhancing technologies (PETs) allow to achieve user’s transactions unlinkability across different online Service Providers. However, current PETs fail to guarantee unlinkability against the Identity Provider (IdP), which becomes a single point of failure in terms of privacy and security, and therefore, might impersonate its users. To address this issue, OLYMPUS EU project establishes an interoperable framework of technologies for a distributed privacy-preserving identity management based on cryptographic techniques that can be applied both to online and offline scenarios. Namely, distributed cryptographic techniques based on threshold cryptography are used to split up the role of the Identity Provider (IdP) into several authorities so that a single entity is not able to impersonate or track its users. The architecture leverages PET technologies, such as distributed threshold-based signatures and privacy attribute-based credentials (p-ABC), so that the signed tokens and the ABC credentials are managed in a distributed way by several IdPs. This paper describes the Olympus architecture, including its associated requirements, the main building blocks and processes, as well as the associated use cases. In addition, the paper shows how the Olympus oblivious architecture can be used to achieve privacy-preserving M2M offline transactions between IoT devices.


2019 ◽  
Vol 6 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Yasmine Labiod ◽  
Abdelaziz Amara Korba ◽  
Nacira Ghoualmi-Zine

In the recent years, the Internet of Things (IoT) has been widely deployed in different daily life aspects such as home automation, electronic health, the electric grid, etc. Nevertheless, the IoT paradigm raises major security and privacy issues. To secure the IoT devices, many research works have been conducted to counter those issues and discover a better way to remove those risks, or at least reduce their effects on the user's privacy and security requirements. This article mainly focuses on a critical review of the recent authentication techniques for IoT devices. First, this research presents a taxonomy of the current cryptography-based authentication schemes for IoT. In addition, this is followed by a discussion of the limitations, advantages, objectives, and attacks supported of current cryptography-based authentication schemes. Finally, the authors make in-depth study on the most relevant authentication schemes for IoT in the context of users, devices, and architecture that are needed to secure IoT environments and that are needed for improving IoT security and items to be addressed in the future.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


Sign in / Sign up

Export Citation Format

Share Document