The effects of super-resolution on object detection performance in an aerial image

Author(s):  
Ngan T. Truong ◽  
Nguyen D. Vo ◽  
Khang Nguyen
2021 ◽  
Vol 13 (9) ◽  
pp. 1854
Author(s):  
Syed Muhammad Arsalan Bashir ◽  
Yi Wang

This paper deals with detecting small objects in remote sensing images from satellites or any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhancement using a deep-learning-based detection method. This paper provides a rationale for image super-resolution for small objects by improving the current super-resolution (SR) framework by incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA) to improve detection performance. The novelty of the method is threefold: first, a framework is proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced with Faster R-CNN or any object detector to perform object detection; second, a residual feature aggregation network was used in the generator, which significantly improved the detection performance as the RFA network detected complex features; and third, the whole network was transformed into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam, VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed that the detection performance increased by using super-resolution methods for spatial resolution enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.


Author(s):  
Jakaria Rabbi ◽  
Nilanjan Ray ◽  
Matthias Schubert ◽  
Subir Chowdhury ◽  
Dennis Chao

The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for the small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and used different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the GAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on car overhead with context and oil and gas storage tank (created by us) data sets show superior performance of our method compared to the standalone state-of-the-art object detectors.


Author(s):  
Jakaria Rabbi ◽  
Nilanjan Ray ◽  
Matthias Schubert ◽  
Subir Chowdhury ◽  
Dennis Chao

The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and use different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) and a self-assembled (oil and gas storage tank) satellite dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.


2010 ◽  
Vol 18 (2) ◽  
pp. 141 ◽  
Author(s):  
Katherine Hanton ◽  
Jadranka Sunde ◽  
Marcus Butavicius ◽  
Nicholas Burns

Author(s):  
Jakaria Rabbi ◽  
Nilanjan Ray ◽  
Matthias Schubert ◽  
Subir Chowdhury ◽  
Dennis Chao

The detection performance of small objects in remote sensing images has not been satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) showed remarkable image enhancement performance, but reconstructed images usually miss high-frequency edge information. Therefore, object detection performance showed degradation for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we applied a new edge-enhanced super-resolution GAN (EESRGAN) to improve the quality of remote sensing images and used different detector networks in an end-to-end manner where detector loss was backpropagated into the EESRGAN to improve the detection performance. We proposed an architecture with three components: ESRGAN, EEN, and Detection network. We used residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we used a faster region-based convolutional network (FRCNN) (two-stage detector) and a single-shot multibox detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) dataset and another self-assembled (oil and gas storage tank) satellite dataset showed superior performance of our method compared to the standalone state-of-the-art object detectors.


2020 ◽  
Vol 12 (9) ◽  
pp. 1432 ◽  
Author(s):  
Jakaria Rabbi ◽  
Nilanjan Ray ◽  
Matthias Schubert ◽  
Subir Chowdhury ◽  
Dennis Chao

The detection performance of small objects in remote sensing images has not been satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) showed remarkable image enhancement performance, but reconstructed images usually miss high-frequency edge information. Therefore, object detection performance showed degradation for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we applied a new edge-enhanced super-resolution GAN (EESRGAN) to improve the quality of remote sensing images and used different detector networks in an end-to-end manner where detector loss was backpropagated into the EESRGAN to improve the detection performance. We proposed an architecture with three components: ESRGAN, EEN, and Detection network. We used residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we used a faster region-based convolutional network (FRCNN) (two-stage detector) and a single-shot multibox detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) dataset and another self-assembled (oil and gas storage tank) satellite dataset showed superior performance of our method compared to the standalone state-of-the-art object detectors.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 678
Author(s):  
Vladimir Tadic ◽  
Tatjana Loncar-Turukalo ◽  
Akos Odry ◽  
Zeljen Trpovski ◽  
Attila Toth ◽  
...  

This note presents a fuzzy optimization of Gabor filter-based object and text detection. The derivation of a 2D Gabor filter and the guidelines for the fuzzification of the filter parameters are described. The fuzzy Gabor filter proved to be a robust text an object detection method in low-quality input images as extensively evaluated in the problem of license plate localization. The extended set of examples confirmed that the fuzzy optimized Gabor filter with adequately fuzzified parameters detected the desired license plate texture components and highly improved the object detection when compared to the classic Gabor filter. The robustness of the proposed approach was further demonstrated on other images of various origin containing text and different textures, captured using low-cost or modest quality acquisition procedures. The possibility to fine tune the fuzzification procedure to better suit certain applications offers the potential to further boost detection performance.


Sign in / Sign up

Export Citation Format

Share Document