An Efficient Computational Approach in the Matrix Pencil Method to Find One Dimensional and Two Dimensional Direction of Arrival

Author(s):  
Hassan M. Elkamchouchi ◽  
Mohammad M. M. Omar
2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Jun Wang ◽  
Hong Xiang ◽  
Shaoming Wei ◽  
Zhongsheng Sun

A study of a two-dimensional state-space balance (2D SSB) method for estimating direction of arrival (DOA) for uniform rectangular array (URA) is presented in this letter. The comprehensive utilization of controllability and observability matrices and automatic pairing technique are considered in this method by using the single snapshot. Therefore, the DOAs of elevation angle and azimuth angle can pair automatically and acquire better estimation performance compared with 2D matrix pencil method or unitary matrix pencil method. In addition, the proposed method can handle correlated signals directly without preprocessing. Simulation is conducted to verify the effectiveness of the proposed method.


Author(s):  
Mohammed Amine Ihedrane ◽  
Seddik Bri ◽  
El Fadl Adiba

Smart antennas have recently received increasing for improving the performance of wireless radio systems. In this research article, we have used a patch antenna using uniform circular arrays (UCA) with central element for direction of arrival (DOA). A central element was added to arrays in order to increase steering capability of the proposed array. This geometry is used to determine the elevation and azimuth based on two famous algorithms of high resolution method: Matrix Pencil method (MP) and MUltiple Signal Classification (MUSIC).The comparison results demonstrate clearly that the matrix pencil is more accurate and stable to estimation of direction of arrival compared to the MUSIC algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5065
Author(s):  
Daniel Chaparro-Arce ◽  
Sergio Gutierrez ◽  
Andres Gallego ◽  
Cesar Pedraza ◽  
Felix Vega ◽  
...  

This paper presents a technique, based on the matrix pencil method (MPM), for the compression of underwater acoustic signals produced by boat engines. The compressed signal, represented by its complex resonance expansion, is intended to be sent over a low-bit-rate wireless communication channel. We demonstrate that the method can provide data compression greater than 60%, ensuring a correlation greater than 93% between the reconstructed and the original signal, at a sampling frequency of 2.2 kHz. Once the signal was reconstituted, a localization process was carried out with the time reversal method (TR) using information from four different sensors in a simulation environment. This process sought to achieve the identification of the position of the ship using only passive sensors, considering two different sensor arrangements.


Sign in / Sign up

Export Citation Format

Share Document