PLD first level surface detector trigger in the Pierre Auger Observatory

Author(s):  
Z. Szadkowski
2019 ◽  
Vol 210 ◽  
pp. 05007
Author(s):  
Kevin-Druis Merenda ◽  

The research horizons of the Pierre Auger Cosmic-Ray Observatory widened when the collaboration found exotic (atmospheric) phenomena in both its Fluorescence Detector (FD) and Surface Detector (SD). The Cosmology and Geophysics task force of the Auger Collaboration focused some of its attention on these highly energetic events, which are correlated to some of the most intense convective thunderstorm systems in the world. In this proceeding, we compare the signal of these exotic events and the signal of cosmic rays, as seen in the FD and the SD. The FD has triggered on numerous transient luminous events, dubbed “elves" since their first observation in 2005. The SD observed peculiar events with radially expanding footprints, which are correlated with lightning strikes reconstructed by the World Wide Lightning Location Network (WWLLN). The traced signals of both of these atmospheric events last longer in time than cosmic ray signals. The footprints are much larger; typically more SD stations (or more FD pixels) contribute to the observations.


2019 ◽  
Vol 197 ◽  
pp. 02001
Author(s):  
Bianca Keilhauer

The Pierre Auger Observatory for detecting ultrahigh energy cosmic rays has been founded in 1999. After a main planning and construction phase of about five years, the regular data taking started in 2004, but it took another four years until the full surface detector array was deployed. In parallel to the main detectors of the Observatory, a comprehensive set of instruments for monitoring the atmospheric conditions above the array was developed and installed as varying atmospheric conditions influence the development and detection of extensive air showers. The multitude of atmospheric monitoring installations at the Pierre Auger Observatory will be presented as well as the challenges and efforts to run such instruments for several decades.


2019 ◽  
Vol 210 ◽  
pp. 05002
Author(s):  
Fred Sarazin ◽  
Corbin Covault ◽  
Toshihiro Fujii ◽  
Robert Halliday ◽  
Jeffrey Johnsen ◽  
...  

We report on the first results of a unique in-situ experimental cross-calibration effort of the surface detector of the Pierre Auger Observatory and of the Telescope Array experiment (Auger@TA). In the first phase of Auger@TA, we performed surface detector station-to-station comparisons for a collection of extensive air showers landing near the experimental setup and detected by Telescope Array. Beyond the deduced cross-calibration curve between the Water-Cherenkov-based Auger and Scintillator-based TA Surface Detector stations, we also investigate the consistency of their response for individual reconstructed showers. The dataset is currently too small to draw firm conclusions as-of-yet. Hence, phase I data taking will continue even as we gear up for the deployment of an Auger micro-array within Telescope Array as part of Phase II of this work.


2021 ◽  
Author(s):  
Juan Miguel Carceller ◽  
Pedro Abreu ◽  
Marco Aglietta ◽  
Justin M. Albury ◽  
Ingomar Allekotte ◽  
...  

2016 ◽  
Vol 12 (S324) ◽  
pp. 295-298
Author(s):  
Lili Yang ◽  

AbstractThe first gravitational wave transient GW150914 was observed by Advanced LIGO on September 14th, 2015 at 09:50:45 Universal Time. In addition to follow-up electromagnetic observations, the detection of neutrinos will probe deeply and more on the nature of astrophysical sources, especially in the ultra-high energy regime. Neutrinos in the EeV energy range were searched in data collected at the surface detector of the Pierre Auger Observatory within ± 500 s and 1 day after the GW150914 event. No neutrino candidates were found. Based on this non-observation, we derive the first and only neutrino fluence upper limit at EeV energies for this event at 90% CL, and report constraints on existence of accretion disk around mergers.


Sign in / Sign up

Export Citation Format

Share Document