ANGUS: A multichannel CMOS circuit for large capacitance silicon photomultiplier detectors for SPECT applications

Author(s):  
Paolo Trigilio ◽  
Riccardo Quaglia ◽  
Filippo Schembari ◽  
Carlo Fiorini
2012 ◽  
Vol E95.C (6) ◽  
pp. 1077-1085 ◽  
Author(s):  
Kosuke KATAYAMA ◽  
Mizuki MOTOYOSHI ◽  
Kyoya TAKANO ◽  
Ryuichi FUJIMOTO ◽  
Minoru FUJISHIMA

1989 ◽  
Vol 25 (11) ◽  
pp. 754-756
Author(s):  
P. Röjder ◽  
C. Svensson
Keyword(s):  

1996 ◽  
Vol 32 (11) ◽  
pp. 991 ◽  
Author(s):  
D.M. Wilson
Keyword(s):  

Author(s):  
Wajahat Ali ◽  
Grahame Faulkner ◽  
Zubair Ahmed ◽  
William Matthews ◽  
Dominic O'Brien ◽  
...  

Author(s):  
Maria Maddalena Calabretta ◽  
Laura Montali ◽  
Antonia Lopreside ◽  
Fabio Fragapane ◽  
Francesco Iacoangeli ◽  
...  

Author(s):  
Aram Radnia ◽  
Hamed Abdollahzadeh ◽  
Behnoosh Teimourian ◽  
Mohammad Hossein Farahani ◽  
Mohammad Esmaeil Akbari ◽  
...  

Abstract Background A gamma probe is a handheld device used for intraoperative interventions following interstitial injection of a radiotracer to locate regional lymph nodes through the external detection of radiation. This work reports on the design and performance evaluation of a novel fully integrated gamma probe (GammaPen), recently developed by our group. Materials and methods GammaPen is an all-in-one pocket gamma probe with low weight and adequate dimensions, consisting of a detector, a control unit and output all together. The detector module consists of a cylindrical Thallium-activated Cesium Iodide [CsI (Tl)] crystal optically coupled to a Silicon photomultiplier (SiPM), shielded using Tungsten housing on side and back faces. The electronics of the probe consists of two small boards to handle signal processing and analog peak detection tasks. A number of parameters, including probe sensitivity in air/water, spatial resolution in air/water, angular resolution in air/water, and side and back shielding effectiveness, were measured to evaluate the performance of the probe based on NEMA NU3-2004 standards. Results The sensitivity of the probe in air at distances of 10, 30, and 50 mm is 18784, 3500, and 1575 cps/MBq. The sensitivity in scattering medium was also measured at distances of 10, 30, and 50 mm as 17,680, 3050, and 1104 cps/MBq. The spatial and angular resolutions in scattering medium were 47 mm and 87 degree at 30 mm distance from the probe, while they were 40 mm and 77 degree in air. The detector shielding effectiveness and leakage sensitivity are 99.91% and 0.09%, respectively. Conclusion The performance characterization showed that GammaPen can be used effectively for sentinel lymph node localization. The probe was successfully used in several surgical interventions by an experienced surgeon confirming its suitability in a clinical setting.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johan Economou Lundeberg ◽  
Jenny Oddstig ◽  
Ulrika Bitzén ◽  
Elin Trägårdh

Abstract Background Lung cancer is one of the most common cancers in the world. Early detection and correct staging are fundamental for treatment and prognosis. Positron emission tomography with computed tomography (PET/CT) is recommended clinically. Silicon (Si) photomultiplier (PM)-based PET technology and new reconstruction algorithms are hoped to increase the detection of small lesions and enable earlier detection of pathologies including metastatic spread. The aim of this study was to compare the diagnostic performance of a SiPM-based PET/CT (including a new block-sequential regularization expectation maximization (BSREM) reconstruction algorithm) with a conventional PM-based PET/CT including a conventional ordered subset expectation maximization (OSEM) reconstruction algorithm. The focus was patients admitted for 18F-fluorodeoxyglucose (FDG) PET/CT for initial diagnosis and staging of suspected lung cancer. Patients were scanned on both a SiPM-based PET/CT (Discovery MI; GE Healthcare, Milwaukee, MI, USA) and a PM-based PET/CT (Discovery 690; GE Healthcare, Milwaukee, MI, USA). Standardized uptake values (SUV) and image interpretation were compared between the two systems. Image interpretations were further compared with histopathology when available. Results Seventeen patients referred for suspected lung cancer were included in our single injection, dual imaging study. No statically significant differences in SUVmax of suspected malignant primary tumours were found between the two PET/CT systems. SUVmax in suspected malignant intrathoracic lymph nodes was 10% higher on the SiPM-based system (p = 0.026). Good consistency (14/17 cases) between the PET/CT systems were found when comparing simplified TNM staging. The available histology results did not find any obvious differences between the systems. Conclusion In a clinical setting, the new SiPM-based PET/CT system with a new BSREM reconstruction algorithm provided a higher SUVmax for suspected lymph node metastases compared to the PM-based system. However, no improvement in lung cancer detection was seen.


Sign in / Sign up

Export Citation Format

Share Document