Comparison between silicon photomultipliers and photomultiplier tubes for pulse shape discrimination with stilbene

Author(s):  
Marc L. Ruch ◽  
Ciara B. Sivels ◽  
Steven A. Czyz ◽  
Marek Flaska ◽  
Sara A. Pozzi
2012 ◽  
Vol 37 ◽  
pp. 1113-1121 ◽  
Author(s):  
R. Acciarri ◽  
N. Canci ◽  
F. Cavanna ◽  
P. Kryczynski ◽  
L. Pandola ◽  
...  

2016 ◽  
Vol 44 ◽  
pp. 1660228 ◽  
Author(s):  
A. Buffler ◽  
A. C. Comrie ◽  
F. D. Smit ◽  
H. J. Wörtche

Progress towards the realization of a new compact neutron spectrometer is described. The detector is based on EJ299-33 plastic scintillator coupled to silicon photomultipliers, and a digital implementation of pulse shape discrimination is used to separate events associated with neutrons from those associated with gamma rays. The spectrometer will be suitable over the neutron energy range 1–100 MeV, illustrated in this work with measurements made using an AmBe radioisotopic source and quasi-monoenergetic neutron beams produced using a cyclotron.


2018 ◽  
Vol 170 ◽  
pp. 07015 ◽  
Author(s):  
Marc A. Wonders ◽  
David L. Chichester ◽  
Marek Flaska

Silicon photomultipliers have received a great deal of interest recently for use in applications spanning a wide variety of fields, including nuclear safeguards and nonproliferation. For nuclear-related applications, the ability of silicon photomultipliers to discriminate neutrons from gamma rays using pulse shape discrimination when coupled with certain organic scintillators is a characteristic of utmost importance. This work reports on progress characterizing the performance of twenty different silicon photomultipliers from five manufacturers with an emphasis on pulse shape discrimination performance and timing. Results are presented on pulse shape discrimination performance as a function of overvoltage for 6-mm x 6-mm silicon photomultipliers, and the time response to stilbene is characterized for silicon photomultipliers of three different sizes. Finally, comparison with a photomultiplier tube shows that some new-generation silicon photomultipliers can perform as well as photomultiplier tubes in neutron-gamma ray discrimination.


1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


Sign in / Sign up

Export Citation Format

Share Document