Enhanced underwater acoustic communication performance using space-time coding and processing

Author(s):  
S. Roy ◽  
T. Duman ◽  
L. Ghazikhanian ◽  
V. McDonald ◽  
J. Proakis ◽  
...  
Author(s):  
Yasin Yousif Al_Aboosi ◽  
Ahmad Zuri Sha'ameri

<p>The shallow water channel is an environment that is of particular interest to many research fields. An underwater acoustic channel is characterized as a multipath channel. Time-varying multipath propagation is one of the major factors that limit the acoustic communication performance in shallow water. This study conducts two underwater acoustic experiments in Tanjung Balau, Johor, Malaysia. A transducer and a hydrophone are submerged at different depths and separated by different distances. Linear frequency modulated (LFM) pulses are chosen as the main transmit signal for the experiments. The cross-correlation between the transmitted and received signals represents the impulse response of the channel (multipath profile). The results show that the amplitude of the successive paths will not rapidly decline, and vice versa, when the distance between the sender and the receiver increases. Moreover, the time difference between the different paths will be small in the case of distance increase. In other words, the successive paths will converge in time.</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shingo Yoshizawa ◽  
Hiroshi Tanimoto ◽  
Takashi Saito

In underwater acoustic communication (UAC), very long delay waves are caused by reflection from water surfaces and bottoms and obstacles. Their waves interfere with desired waves and induce strong multipath interference. Use of a guard interval (GI) is effective for channel compensation in OFDM. However, a GI tends to be long in shallow-water environment because a guard time is determined by a delay time of multipath. A long GI produces a very long OFDM frame in several seconds, which is disadvantageous to a response speed of communication. This paper presents a method of keeping good communication performance even for a short GI. We discuss influence of intercarrier interference (ICI) in OFDM demodulation and propose a method of data selective rake reception (DSRake). The effectiveness of the proposed method is discussed by received signal distribution and confirmed by simulation results.


Sign in / Sign up

Export Citation Format

Share Document