Coastal Ocean Wind Speed Estimation Based GNSS-Reflectometry of BeiDou GEO Satellite

Author(s):  
Kittipong Kasantikul ◽  
Dongkai Yang ◽  
Qiang Wang
2022 ◽  
Vol 269 ◽  
pp. 112801
Author(s):  
Milad Asgarimehr ◽  
Caroline Arnold ◽  
Tobias Weigel ◽  
Chris Ruf ◽  
Jens Wickert

Author(s):  
Generoso Giangregorio ◽  
Pia Addabbo ◽  
Carmela Galdi ◽  
Maurizio di Bisceglie

2020 ◽  
Vol 242 ◽  
pp. 111744
Author(s):  
Matthew Lee Hammond ◽  
Giuseppe Foti ◽  
Christine Gommenginger ◽  
Meric Srokosz

2016 ◽  
Vol 63 (12) ◽  
pp. 7754-7764 ◽  
Author(s):  
Dan-Yong Li ◽  
Wen-Chuan Cai ◽  
Peng Li ◽  
Zi-Jun Jia ◽  
Hou-Jin Chen ◽  
...  

2021 ◽  
Author(s):  
B Shivalal Patro ◽  
Pruthiraj Swain ◽  
B Vandana
Keyword(s):  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3350 ◽  
Author(s):  
Kittipong Kasantikul ◽  
Dongkai Yang ◽  
Qiang Wang ◽  
Aung Lwin

Oceanographic remote sensing, which is based on the sensitivity of reflected signals from the Global Navigation Satellite Systems (GNSS), so-called GNSS-Reflectometry (GNSS-R), is very useful for the observation of ocean wind speed. Wind speed estimation over the ocean is the core factor in maritime transportation management and the study of climate change. The main concept of the GNSS-R technique is using the different times between the reflected and the direct signals to measure the wind speed and wind direction. Accordingly, this research proposes a novel technique for wind speed estimation involving the integration of an artificial neural network and the particle filter based on a theoretical model. Moreover, particle swarm optimization was applied to find the optimal weight and bias of the artificial neural network, in order to improve the accuracy of the estimation result. The observation dataset of the reflected signal information from BeiDou Geostationary Earth Orbit (GEO) satellite number 4 was used as an input for the estimation model. The data consisted of two phases with I and Q components. Two periods of BeiDou data were selected, the first period was from 3 to 8 August 2013 and the second period was from 12 to 14 August 2013, which corresponded to events from the typhoon Utor. The in situ wind speed measurement collected from the buoy station was used to validate the results. A coastal experiment was conducted at the Yangjiang site located in the South China Sea. The results show the ability of the proposed technique to estimate wind speed with a root mean square error of approximately 1.9 m/s.


Sign in / Sign up

Export Citation Format

Share Document