The analysis of the solutions for harmonic elimination PWM bipolar waveform with a specialized differential evolution algorithm

Author(s):  
Stefan G. Rosu ◽  
Constantin Radoi ◽  
Adriana Florescu ◽  
Paolo Guglielmi ◽  
Michele Pastorelli
2021 ◽  
Vol 25 (1) ◽  
pp. 31-36
Author(s):  
Rim Feyrouz Abdelgoui ◽  
◽  
Rachid Taleb ◽  
Abderrahim Bentaallah ◽  
Fayçal Chabni ◽  
...  

This study presents the application of differential evolution algorithm to compute optimal switching angles for a single-phase nine-level inverter to improve the output voltage quality. The topology of the proposed inverter in this article is a simple cascade converter composed of two H-bridge cells with non-equal DC voltage sources in order to generate multiple voltage levels. Selective harmonic elimination pulse width modulation strategy is used to improve the generated AC output voltage waveform. The differential evolution optimization algorithm is used to solve non-linear transcendental equations necessary for the (SHPWM). Computational results obtained from computer simulations presented a good agreement with the theoretical predictions. A laboratory prototype based on STM32F407 microcontroller was built in order to validate the simulation results. The experimental results show the effectiveness of the proposed modulation method.


2009 ◽  
Vol 29 (4) ◽  
pp. 1046-1047
Author(s):  
Song-shun ZHANG ◽  
Chao-feng LI ◽  
Xiao-jun WU ◽  
Cui-fang GAO

2013 ◽  
Vol 8 (999) ◽  
pp. 1-6
Author(s):  
Chuii Khim Chong ◽  
Mohd Saberi Mohamad ◽  
Safaai Deris ◽  
Mohd Shahir Shamsir ◽  
Lian En Chai ◽  
...  

Author(s):  
Haiqing Liu ◽  
Jinmeng Qu ◽  
Yuancheng Li

Background: As more and more renewable energy such as wind energy is connected to the power grid, the static economic dispatch in the past cannot meet its needs, so the dynamic economic dispatch of the power grid is imperative. Methods: Hence, in this paper, we proposed an Improved Differential Evolution algorithm (IDE) based on Differential Evolution algorithm (DE) and Artificial Bee Colony algorithm (ABC). Firstly, establish the dynamic economic dispatch model of wind integrated power system, in which we consider the power balance constraints as well as the generation limits of thermal units and wind farm. The minimum power generation costs are taken as the objectives of the model and the wind speed is considered to obey the Weibull distribution. After sampling from the probability distribution, the wind speed sample is converted into wind power. Secondly, we proposed the IDE algorithm which adds the local search and global search thoughts of ABC algorithm. The algorithm provides more local search opportunities for individuals with better evolution performance according to the thought of artificial bee colony algorithm to reduce the population size and improve the search performance. Results: Finally, simulations are performed by the IEEE-30 bus example containing 6 generations. By comparing the IDE with the other optimization model like ABC, DE, Particle Swarm Optimization (PSO), the experimental results show that obtained optimal objective function value and power loss are smaller than the other algorithms while the time-consuming difference is minor. The validity of the proposed method and model is also demonstrated. Conclusion: The validity of the proposed method and the proposed dispatch model is also demonstrated. The paper also provides a reference for economic dispatch integrated with wind power at the same time.


Sign in / Sign up

Export Citation Format

Share Document