A High-Performance Neuron for Artificial Neural Network based on Izhikevich model

Author(s):  
Maria Sapounaki ◽  
Athanasios Kakarountas
2018 ◽  
pp. 77-83

Modelización del ensayo de resistencia a compresión del concreto de alta resistencia mediante una red neuronal artificial. Obtención de la incertidumbre del resultado Modeling the resistance to compression of high performance concrete test by means of an artificial neural network. Obtaining the uncertainty of the results Francisco García Fernández1, Ana Torre Carrillo2, Isabel Moromi Nakata2, Pedro Espinoza Haro3 y Luis Acuña Pinaud3 1 Dpto. Sistemas y Recursos Naturales. Universidad Politécnica de Madrid. Ciudad Universitaria S/N, 28040 Madrid, España 2 Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería. Av. Túpac Amaru, 210. Lima 25, Perú 3 Facultad de Ingeniería Industrial y de Sistemas. Universidad Nacional de Ingeniería. Av. Túpac Amaru, 210. Lima 25, Perú DOI: https://doi.org/10.33017/RevECIPeru2015.0012/  Resumen En los últimos años las ANN han tenido un gran desarrollo en el control de procesos industriales debido principalmente a su capacidad de modelizar relaciones complejas, que los sistemas tradicionales no han sido capaces de hacer, y predecir satisfactoriamente si las características de un producto se adecuan o no a las especificaciones correspondientes. Estas estructuras han sido ampliamente utilizadas en la caracterización de otros materiales como cemento, hormigón, algunos metales o la madera. El perceptrón multicapa, una de las redes neuronales artificiales más populares, se ha convertido en los últimos tiempos en una potente herramienta de modelización en numerosos campos que van desde las finanzas, a la ingeniería o la medicina. Esta herramienta consigue mejorar sustancialmente cualquier modelo previo propuesto para modelizar cualquier sistema independientemente de la naturaleza de éste, con la ventaja añadida de que no necesitan ninguna suposición previa sobre la estructura de los datos Sin embargo, la red sólo proporciona el valor de la salida sin ninguna información acerca de su precisión. La obtención de la incertidumbre de salida es importante, no sólo porque proporciona un intervalo de confianza sobre el valor de salida, sino porque da una idea de la calidad del método de medida. Esta incertidumbre procede de dos fuentes, por un lado el ruido inherente a los valores de entrada y por otro la simplificación del fenómeno que todo modelo matemático supone. En este trabajo se va a desarrollar una nueva metodología para obtener tanto la incertidumbre como los intervalos de confianza de la salida de un modelo específico de red neuronal, el perceptrón multicapa, basándose en el método de simulación de Montecarlo especificado en Suplemento 1 de la GUM para posteriormente aplicarlo a la modelizacion del ensayo de resistencia a compression del concreto. Descriptores: Concreto de alta resistencia, red neuronal artificial, resistencia a compresión, incertidumbre, Método de Monte Carlo Abstract Major advances have been made with the use of ANNs in recent years in industrial process control, mainly because they are capable of modeling complex relations, unlike conventional systems, and can adequately predict whether or not the characteristics of a product are in line with specifications. They have been widely used to characterize other materials such as cement, concrete, certain metals or wood. The multilayer perceptron, one of the most popular artificial neural networks, has become a powerful modeling tool in numerous fields, ranging from finances to engineering and medicine. This tool is capable of considerably improving on all previous models proposed for modeling any system, regardless of its nature, with the added advantage that no prior assumption on the structure of the data is necessary. However, the network provides only the output value, with no information about its accuracy. Obtaining the output uncertainty is important, not only because it provides a coverage interval for the output value, but also because it indicates the quality of the measuring method. This uncertainty comes from two sources: firstly, the inherent uncertainty in the input data, and secondly, the simplification of the phenomenon involved in any mathematical model. This study develops a new methodology for obtaining both the output uncertainty and coverage intervals of a specific neural network model - the multilayer perceptron - based on the Monte Carlo simulation method indicated in Supplement 1 to the Guide to the Expression of Uncertainty in Measurement (GUM), in order to use it when modelling the test of resistance to compression of concrete. Keywords: High performance concrete, artificial neural network, resistance to compression, uncertainty, Monte Carlo method.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda

We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN). Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA). The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.


Author(s):  
Saranya R ◽  
Thangavel S

<p>For the high performance drives the artificial neural network based Induction motor is proposed. During the load variation, the performance of the Induction motor proves to be low. Intelligent controller provided for controlling the speed of induction motor especially with high dynamic disturbances. An effective sensorless strategy based on artificial neural network controller is developed to estimate rotor’s position and to regulate the stator flux under low speed, helps to track the motor speed accurately during the whole operating region. The overall combination of this setup is simulated in the MATLAB/SIMULINK platform. Finally an experimental prototype of the proposed drive has been developed to validate the performance of Induction Motor and the dynamic speed response of Induction motor with proposed controller was estimated for various speed and found that the speed can be controlled effectively.</p>


Sign in / Sign up

Export Citation Format

Share Document