izhikevich model
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
pp. 177-181
Author(s):  
Shigeo Sato ◽  
Satoshi Moriya ◽  
Yuka Kanke ◽  
Hideaki Yamamoto ◽  
Yoshihiko Horio ◽  
...  

2020 ◽  
Vol 15 (04) ◽  
pp. 195-206
Author(s):  
David. H. Margarit ◽  
Marcela V. Reale ◽  
Ariel F. Scagliotti

Individual neuron models give a comprehensive explanation of the behavior of the electrical potential of cell membranes. These models were and are a source of constant analysis to understand the functioning of, mainly, the complexity of the brain. In this work, using the Izhikevich model, we propose, analyze and characterize the transmission of a signal between two neurons unidirectionally coupled. Two possible states were characterized (sub-threshold and over-threshold) depending on the values of the signal amplitude, as well also the relationship between the transmitted and received signal taking into account the coupling. Furthermore, the activation of the emitting neuron (its transition from a resting state to spiking state) and the transmission to the receptor neuron were analyzed by adding white noise to the system.


Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1558-1575
Author(s):  
Vahid Azimirad ◽  
Mohammad Fattahi Sani

SUMMARYIn this paper, the behavioral learning of robots through spiking neural networks is studied in which the architecture of the network is based on the thalamo-cortico-thalamic circuitry of the mammalian brain. According to a variety of neurons, the Izhikevich model of single neuron is used for the representation of neuronal behaviors. One thousand and ninety spiking neurons are considered in the network. The spiking model of the proposed architecture is derived and prepared for the learning problem of robots. The reinforcement learning algorithm is based on spike-timing-dependent plasticity and dopamine release as a reward. It results in strengthening the synaptic weights of the neurons that are involved in the robot’s proper performance. Sensory and motor neurons are placed in the thalamus and cortical module, respectively. The inputs of thalamo-cortico-thalamic circuitry are the signals related to distance of the target from robot, and the outputs are the velocities of actuators. The target attraction task is used as an example to validate the proposed method in which dopamine is released when the robot catches the target. Some simulation studies, as well as experimental implementation, are done on a mobile robot named Tabrizbot. Experimental studies illustrate that after successful learning, the meantime of catching target is decreased by about 36%. These prove that through the proposed method, thalamo-cortical structure could be trained successfully to learn to perform various robotic tasks.


2019 ◽  
Vol 7 (18) ◽  
pp. 3121-3126
Author(s):  
Massimo Fioranelli ◽  
Alireza Sepehri ◽  
Maria Grazia Roccia ◽  
Chiara Rossi ◽  
Jacopo Lotti ◽  
...  

AIM: In this paper, using a mathematical model, we will show that for special exchanged photons, the Hamiltonian of a collection of neurons tends to a constant number and all activities is stopped. These photons could be called as the dead photons. To this aim, we use concepts of Bio-BIon in Izhikevich Neuron model. METHODS: In a neuron, there is a page of Dendrite, a page of axon's terminals and a tube of Schwann cells, axon and Myelin Sheath that connects them. These two pages and tube form a Bio-Bion. In a Bio-Bion, exchanging photons and some charged particles between terminals of dendrite and terminals of axon leads to the oscillation of neurons and transferring information. This Bion produces the Hamiltonian, wave equation and action potential of Izhikevich Neuron model. Also, this Bion determines the type of dependency of parameters of Izhikevich model on temperature and frequency and obtains the exact shape of membrane capacitance, resting membrane potential and instantaneous threshold potential. RESULTS: Under some conditions, waves of neurons in this BIon join to each other and potential shrinks to a delta function. Consequently, total Hamiltonian of the system tends to a constant number and system of neuron act like a dead system. Finally, this model indicates that all neurons have the ability to produce similar waves and signals like waves of the mind. CONCLUSION: Generalizing this to biology, we can claim that neurons out of the brain can produce signals of minding and imaging and thus mind isn’t confined to the brain.


Sign in / Sign up

Export Citation Format

Share Document