PWM Control of Matrix Converter for Reducing a Number of Commutations and Output Voltage Harmonics

Author(s):  
Andou Yusuke ◽  
Takaharu Takeshita
2019 ◽  
Vol 139 (11) ◽  
pp. 901-907
Author(s):  
Jumpei Sawada ◽  
Shin-ichi Motegi ◽  
Yoshitaka Nakamura ◽  
Masaki Yamada

2015 ◽  
Vol 661 ◽  
pp. 29-35
Author(s):  
En Chih Chang ◽  
Hung Liang Cheng ◽  
Chien Hsuan Chang ◽  
Jin Wei Liu ◽  
Chih Hsien Chuang ◽  
...  

This paper develops an enhanced grey variable structure controlled DC-AC inverter in parallel, and is suitable for the application of ultra-precision machining (UPM). The enhanced grey variable structure control methodology consists of a nonlinear sliding function (NSF) and a grey model, GM(2,1). The NSF has finite system-state convergence time, and thus the AC output voltage regulation and balanced current-sharing among the parallel modules can be achieved. However, once the loading of the UPM is a highly nonlinear condition, the chatter still exists in NSF. The chatter may cause heat losses and high voltage harmonics in parallel-connected DC-AC inverter output, and thus deteriorates the stability and reliability of the UPM. To eliminate the chatter, the control gains of the NSF can be adjusted by the use of the GM(2,1) under system uncertainty bounds are overestimated. With the enhanced methodology, the parallel-connected DC-AC inverter yields a high-quality AC output voltage with low voltage harmonics and fast dynamic response under highly nonlinear loading, thus achieving the stability and reliability of the UPM. Experimental results are performed to demonstrate the enhanced methodology.


Sign in / Sign up

Export Citation Format

Share Document