A fault-tolerant energy-efficient computational offloading approach with minimal energy and response time in mobile cloud computing

Author(s):  
Manshu Goyal ◽  
Poonam Saini
2015 ◽  
Vol 13 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Muhammad Shiraz ◽  
Abdullah Gani ◽  
Azra Shamim ◽  
Suleman Khan ◽  
Raja Wasim Ahmad

2020 ◽  
Vol 2 (1) ◽  
pp. 38-49
Author(s):  
Dr. Jennifer S. Raj

The mobile devices capabilities are found to be greater than before by utilizing the cloud services. There are various of service rendered by the cloud paradigm and the mobile devices usually allows the execution of the resource-intensive applications on the resource- constrained mobile device to be offloaded to the cloudlets that are resource rich thus enhancing the its processing capabilities. But accessing the cloud services within the minimum response time and energy consumption still remains as a serious research problem. So the proposed method put forth in the paper scopes in developing a frame work to choose the optimal cloud service provider. The frame work proposed is categorized into two stages where the initial stage engages the classifier to segregate the mobile device according to the fuzzy K-nearest neighbor and cultivates an improved computational offloading employing the Hidden Markov Model and ACO- ant colony optimization. The algorithm proffered is implemented in the MATLAB version 9.1 and the performance is evinced on the basis of the response time, energy consumption and the processing cost. The results obtained through the proposed method proves to provide an 89% better response time, 95 % better energy consumption and 50% enhanced processing cost compared to the few existing computational offloading methods put forth for the mobile cloud computing.


Author(s):  
Bora Karaoglu ◽  
Tolga Numanoglu ◽  
Bulent Tavli ◽  
Wendi Heinzelman

For military communication systems, it is important to achieve robust and energy efficient real-time communication among a group of mobile users without the support of a pre-existing infrastructure. Furthermore, these communication systems must support multiple communication modes, such as unicast, multicast, and network-wide broadcast, to serve the varied needs in military communication systems. One use for these military communication systems is in support of real-time mobile cloud computing, where the response time is of utmost importance; therefore, satisfying real-time communication requirements is crucial. In this chapter, we present a brief overview of military tactical communications and networking (MTCAN). As an important example of MTCAN, we present the evolution of the TRACE family of protocols, describing the design of the TRACE protocols according to the tactical communications and networking requirements. We conclude the chapter by identifying how the TRACE protocols can enable mobile cloud computing within military communication systems.


Sign in / Sign up

Export Citation Format

Share Document