scholarly journals Robust Speed Sensorless Control of Doubly-Fed Induction Machine Based on Input-Output Feedback Linearization Control Using a Sliding-Mode Observer

Author(s):  
A. Farrokh Payam ◽  
M. Jalalifar
2008 ◽  
Vol 5 (1) ◽  
pp. 139-154 ◽  
Author(s):  
Farrokh Payam

In this paper a nonlinear controller is presented for Doubly-Fed Induction Machine (DFIM) drives. The nonlinear controller is designed based on the adaptive input-output feedback linearization control technique, using the fifth order model of induction machine in fixed stator d, q axis reference frames with stator currents and rotor flux components as state variables. The nonlinear controller can perfectly track the torque and flux reference signals in spite of stator and rotor resistance variations. Two level SVM-PWM back-to-back voltage source inverters are employed in the rotor circuit, in order to make the drive system capable of operating in the motoring and generating modes below and above the synchronous speed. Computer simulation results obtained, confirm the effectiveness and validity of the proposed control approach.


2011 ◽  
Vol 7 (1) ◽  
pp. 19-24
Author(s):  
Aamir Ahmed ◽  
Martino Ajangnay ◽  
Shamboul Mohamed ◽  
Matthew Dunnigan

Induction Motor (IM) speed control is an area of research that has been in prominence for some time now. In this paper, a nonlinear controller is presented for IM drives. The nonlinear controller is designed based on input-output feedback linearization control technique, combined with sliding mode control (SMC) to obtain a robust, fast and precise control of IM speed. The input-output feedback linearization control decouples the flux control from the speed control and makes the synthesis of linear controllers possible. To validate the performances of the proposed control scheme, we provided a series of simulation results and a comparative study between the performances of the proposed control strategy and those of the feedback linearization control (FLC) schemes. Simulation results show that the proposed control strategy scheme shows better performance than the FLC strategy in the face of system parameters variation.


Sign in / Sign up

Export Citation Format

Share Document