2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hongqing Fang ◽  
Pei Tang ◽  
Hao Si

In this paper, maximal relevance measure and minimal redundancy maximal relevance (mRMR) algorithm (under D-R and D/R criteria) have been applied to select features and to compose different features subsets based on observed motion sensor events for human activity recognition in smart home environments. And then, the selected features subsets have been evaluated and the activity recognition accuracy rates have been compared with two probabilistic algorithms: naïve Bayes (NB) classifier and hidden Markov model (HMM). The experimental results show that not all features are beneficial to human activity recognition and different features subsets yield different human activity recognition accuracy rates. Furthermore, even the same features subset has different effect on human activity recognition accuracy rate for different activity classifiers. It is significant for researchers performing human activity recognition to consider both relevance between features and activities and redundancy among features. Generally, both maximal relevance measure and mRMR algorithm are feasible for feature selection and positive to activity recognition.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Huaijun Wang ◽  
Jing Zhao ◽  
Junhuai Li ◽  
Ling Tian ◽  
Pengjia Tu ◽  
...  

Human activity recognition (HAR) can be exploited to great benefits in many applications, including elder care, health care, rehabilitation, entertainment, and monitoring. Many existing techniques, such as deep learning, have been developed for specific activity recognition, but little for the recognition of the transitions between activities. This work proposes a deep learning based scheme that can recognize both specific activities and the transitions between two different activities of short duration and low frequency for health care applications. In this work, we first build a deep convolutional neural network (CNN) for extracting features from the data collected by sensors. Then, the long short-term memory (LTSM) network is used to capture long-term dependencies between two actions to further improve the HAR identification rate. By combing CNN and LSTM, a wearable sensor based model is proposed that can accurately recognize activities and their transitions. The experimental results show that the proposed approach can help improve the recognition rate up to 95.87% and the recognition rate for transitions higher than 80%, which are better than those of most existing similar models over the open HAPT dataset.


Sign in / Sign up

Export Citation Format

Share Document