smart home environments
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 3 (2) ◽  
Author(s):  
Björn Friedrich ◽  
Enno-Edzard Steen ◽  
Sandra Hellmers ◽  
Jürgen M. Bauer ◽  
Andreas Hein

AbstractMobility is one of the key performance indicators of the health condition of older adults. One important parameter is the gait speed. The mobility is usually assessed under the supervision of a professional by standardised geriatric assessments. Using sensors in smart home environments for continuous monitoring of the gait speed enables physicians to detect early stages of functional decline and to initiate appropriate interventions. This in combination with a floor plan smart home sensors were used to calculate the distance that a person walked in the apartment and the inertial measurement unit data for estimating the actual walking time. A Gaussian kernel density estimator was applied to the computed values and the maximum of the kernel density estimator was considered as the gait speed. The proposed method was evaluated on a real-world dataset and the estimations of the gait speed had a deviation smaller than $$0.10 \, \frac{\mathrm{m}}{\mathrm{s}}$$ 0.10 m s , which is smaller than the minimal clinically important difference, compared to a baseline from a standardised geriatrics assessment.


2021 ◽  
Author(s):  
Albert Rego ◽  
Pedro Luis González Ramírez ◽  
Jose M. Jimenez ◽  
Jaime Lloret

AbstractInternet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved different services and tasks by automatizing them. In this field, reinforcement learning (RL) provides an unsupervised way to learn from the environment. In this paper, a new intelligent system based on RL and deep learning is proposed for Smart Home environments to guarantee good levels of QoE, focused on multimedia services. This system is aimed to reduce the impact on user experience when the classifying system achieves a low accuracy. The experiments performed show that the deep learning model proposed achieves better accuracy than the KNN algorithm and that the RL system increases the QoE of the user up to 3.8 on a scale of 10.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1488
Author(s):  
JiHyeon Oh ◽  
SungJin Yu ◽  
JoonYoung Lee ◽  
SeungHwan Son ◽  
MyeongHyun Kim ◽  
...  

With the information and communication technologies (ICT) and Internet of Things (IoT) gradually advancing, smart homes have been able to provide home services to users. The user can enjoy a high level of comfort and improve his quality of life by using home services provided by smart devices. However, the smart home has security and privacy problems, since the user and smart devices communicate through an insecure channel. Therefore, a secure authentication protocol should be established between the user and smart devices. In 2020, Xiang and Zheng presented a situation-aware protocol for device authentication in smart grid-enabled smart home environments. However, we demonstrate that their protocol can suffer from stolen smart device, impersonation, and session key disclosure attacks and fails to provide secure mutual authentication. Therefore, we propose a secure and lightweight authentication protocol for IoT-based smart homes to resolve the security flaws of Xiang and Zheng’s protocol. We proved the security of the proposed protocol by performing informal and formal security analyses, using the real or random (ROR) model, Burrows–Abadi–Needham (BAN) logic, and the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. Moreover, we provide a comparison of performance and security properties between the proposed protocol and related existing protocols. We demonstrate that the proposed protocol ensures better security and lower computational costs than related protocols, and is suitable for practical IoT-based smart home environments.


2020 ◽  
Author(s):  
Björn Friedrich ◽  
Enno-Edzard Steen ◽  
Sebastian Fudickar ◽  
Andreas Hein

A continuous monitoring of the physical strength and mobility of elderly people is important for maintaining their health and treating diseases at an early stage. However, frequent screenings by physicians are exceeding the logistic capacities. An alternate approach is the automatic and unobtrusive collection of functional measures by ambient sensors. In the current publication, we show the correlation among data of ambient motion sensors and the wellestablished mobility assessment Short-Physical-Performance-Battery and Tinetti. We use the average number of motion sensor events for correlation with the assessment scores. The evaluation on a real-world dataset shows a moderate to strong correlation with the scores of standardised geriatrics physical assessments.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hongqing Fang ◽  
Pei Tang ◽  
Hao Si

In this paper, maximal relevance measure and minimal redundancy maximal relevance (mRMR) algorithm (under D-R and D/R criteria) have been applied to select features and to compose different features subsets based on observed motion sensor events for human activity recognition in smart home environments. And then, the selected features subsets have been evaluated and the activity recognition accuracy rates have been compared with two probabilistic algorithms: naïve Bayes (NB) classifier and hidden Markov model (HMM). The experimental results show that not all features are beneficial to human activity recognition and different features subsets yield different human activity recognition accuracy rates. Furthermore, even the same features subset has different effect on human activity recognition accuracy rate for different activity classifiers. It is significant for researchers performing human activity recognition to consider both relevance between features and activities and redundancy among features. Generally, both maximal relevance measure and mRMR algorithm are feasible for feature selection and positive to activity recognition.


Sign in / Sign up

Export Citation Format

Share Document